Abstract
The pancreatic exocrine cell of the guinea pig has a voluminous endoplasmic reticulum distinguished by extensive association with small, dense particles, and by its orderly disposition in the basal region of the cell. In addition to the small, (∼15 mµ), dense particles attached to the limiting membrane of the endoplasmic reticulum, numerous particles of similar appearance are found freely scattered in the cytoplasmic matrix. The various cell structures of pancreatic exocrine cells can be satisfactorily identified in pancreatic homogenates. The microsome fraction consists primarily of spherical vesicles (80 to 300 mµ), limited by a thin membrane (7 mµ) which bears small (∼15 mµ) dense particles attached on its outer surface. The content of the microsomal vesicles is usually of high density. Pancreatic microsomes derive by extensive fragmentation mainly from the rough surfaced parts of the endoplasmic reticula of exocrine cells. A few damaged mitochondria and certain dense granules (∼150 mµ) originating probably from islet cells, contaminate the microsome fraction. Pancreatic microsomes contain RNA, protein, and a relatively small amount of phospholipide and hemochromogen. They do not have DPNH-cytochrome c reductase activity. In six experiments the RNA/protein N ratios were found grouped around two different means, namely 0.6 and 1.3. Pancreatic microsomes are more labile than liver microsomes but react in a similar way to RN-ase-(loss of the particulate component and RNA), and deoxycholate treatment (loss of the membranous component and of phospholipide, hemochromogen, and most of the protein). Postmicrosomal fractions consisting primarly of small (∼15 mµ), dense particles of ribonucleoprotein (RNA/protein N ratio = 1 to 2) were obtained by further centrifugation of the microsomal supernatant. The small nucleoprotein particles of these fractions are frequently found associated in chains or clusters.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAILIE M., MORTON R. K. Cytochromes of microsomal particles; cytochrome b5 of microsomes from animal tissues. Nature. 1955 Jul 16;176(4472):111–113. doi: 10.1038/176111a0. [DOI] [PubMed] [Google Scholar]
- BERNHARD W., HAGUENAU F., GAUTIER A., OBERLING C. La structure submicroscopique des elements basophiles cytoplasmiques dans le foie, le pancreas et les glandes salivaires; étude de coupes ultrafines au microscope électronique. Z Zellforsch Mikrosk Anat. 1952;37(3):281–300. [PubMed] [Google Scholar]
- DALTON A. J. Electron micrography of epithelial cells of the gastro-intestinal tract and pancreas. Am J Anat. 1951 Jul;89(1):109–133. doi: 10.1002/aja.1000890105. [DOI] [PubMed] [Google Scholar]
- DALTON A. J., FELIX M. D. Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis in situ, in homogenates and after isolation. Am J Anat. 1954 Mar;94(2):171–207. doi: 10.1002/aja.1000940202. [DOI] [PubMed] [Google Scholar]
- PALADE G. E. A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1955 Jan;1(1):59–68. doi: 10.1083/jcb.1.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. Intracisternal granules in the exocrine cells of the pancreas. J Biophys Biochem Cytol. 1956 Jul 25;2(4):417–422. doi: 10.1083/jcb.2.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E., PORTER K. R. Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J Exp Med. 1954 Dec 1;100(6):641–656. doi: 10.1084/jem.100.6.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. Studies on the endoplasmic reticulum. II. Simple dispositions in cells in situ. J Biophys Biochem Cytol. 1955 Nov 25;1(6):567–582. doi: 10.1083/jcb.1.6.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PETERMANN M. L., HAMILTON M. G., MIZEN N. A. Electrophoretic analysis of the macromolecular nucleoprotein particles of mammalian cytoplasm. Cancer Res. 1954 Jun;14(5):360–366. [PubMed] [Google Scholar]
- PETERMANN M. L., MIZEN N. A., HAMILTON M. G. The macromolecular particles of normal and regenerating rat liver. Cancer Res. 1953 Apr-May;13(4-5):372–375. [PubMed] [Google Scholar]
- PETERMANN M. L. The macromolecular nucleoprotein particles of normal rat liver and azo-dye induced liver tumors. Tex Rep Biol Med. 1954;12(4):921–930. [PubMed] [Google Scholar]
- SIEBERT G., LANG K., LUCIUS S., ROSSMULLER G. Untersuchungen über Stoffwechselprozesse in isolierten Zellkernen. IX. Uber den Einbau von anorganischem Phosphat (P32) in isolierte Zellkerne in vitro. Biochem Z. 1953;324(4):311–324. [PubMed] [Google Scholar]
- SIEBERT G., WERLE E., JUNG G., MAIER L. Intracelluläre Verteilung von Kallikrein und von Bradykininogen in Schweinepankreas. Biochem Z. 1955;326(6):420–423. [PubMed] [Google Scholar]
- SJOSTRAND F. S. Electron microscopy of mitochondria and cytoplasmic double membranes. Nature. 1953 Jan 3;171(4340):30–32. doi: 10.1038/171030a0. [DOI] [PubMed] [Google Scholar]
- SJOSTRAND F. S., HANZON V. Membrane structures of cytoplasm and mitochondria in exocrine cells of mouse pancreas as revealed by high resolution electron microscopy. Exp Cell Res. 1954 Nov;7(2):393–414. doi: 10.1016/s0014-4827(54)80086-3. [DOI] [PubMed] [Google Scholar]
- SJOSTRAND F. S., HANZON V. Ultrastructure of Golgi apparatus of exocrine cells of mouse pancreas. Exp Cell Res. 1954 Nov;7(2):415–429. doi: 10.1016/s0014-4827(54)80087-5. [DOI] [PubMed] [Google Scholar]
- WATSON M. L. The nuclear envelope; its structure and relation to cytoplasmic membranes. J Biophys Biochem Cytol. 1955 May 25;1(3):257–270. doi: 10.1083/jcb.1.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]