Abstract
The DNA of several strains of Saccharomyces cerevisiae was labeled by growing the culture in medium supplemented with thymidylate and bromodeoxyuridylate. It was thus possible to follow the course of mitochondrial DNA replication in density shift experiments by determining the buoyant density distribution of unreplicated and replicated DNAs in analytical CsCl gradients. DNA replication was followed for three generations after transfer of cultures from light medium to heavy medium and heavy medium to light medium. Under both conditions, the density shifts observed for mitochondrial DNA were those expected for semiconservative, nondispersive replication. This was further confirmed by analysis of the buoyant density of alkali-denatured hybrid mitochondrial DNA. With this method, no significant recombination between replicated and unreplicated DNA was detected after three generations of growth.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bick M. D., Davidson R. L. Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line. Proc Natl Acad Sci U S A. 1974 May;71(5):2082–2086. doi: 10.1073/pnas.71.5.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisson L., Thorner J. Thymidine 5'-monophosphate-requiring mutants of Saccharomyces cerevisiae are deficient in thymidylate synthetase. J Bacteriol. 1977 Oct;132(1):44–50. doi: 10.1128/jb.132.1.44-50.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brendel M., Fäth W. W., Laskowski W. Isolation and characterization of mutants of Saccharomyces cerevisiae able to grow after inhibition of dTMP synthesis. Methods Cell Biol. 1975;11:287–294. doi: 10.1016/s0091-679x(08)60329-5. [DOI] [PubMed] [Google Scholar]
- Brendel M., Haynes R. H. Kinetics and genetic control of the incorporation of thymidine monophosphate in yeast DNA. Mol Gen Genet. 1972;117(1):39–44. doi: 10.1007/BF00268835. [DOI] [PubMed] [Google Scholar]
- Cryer D. R., Goldthwaite C. D., Zinker S., Lam K. B., Storm E., Hirschberg R., Blamire J., Finkelstein D. B., Marmur J. Studies on nuclear and mitochondrial DNA of Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol. 1974;38:17–29. doi: 10.1101/sqb.1974.038.01.005. [DOI] [PubMed] [Google Scholar]
- Flory P. J., Jr, Vinograd J. 5-bromodeoxyuridine labeling of monomeric and catenated circular mitochondrial DNA in HeLa cells. J Mol Biol. 1973 Feb 25;74(2):81–94. doi: 10.1016/0022-2836(73)90100-9. [DOI] [PubMed] [Google Scholar]
- Goldthwaite C. D., Cryer D. R., Marmur J. Effect of carbon source on the replication and transmission of yeast mitochondrial genomes. Mol Gen Genet. 1974;133(2):87–104. doi: 10.1007/BF00264830. [DOI] [PubMed] [Google Scholar]
- Grigg G. W. Selective breakage of DNA alongside 5-bromodeoxyuridine nucleotide residues by high temperature hydrolysis. Nucleic Acids Res. 1977 Apr;4(4):969–987. doi: 10.1093/nar/4.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grivell A. R., Jackson J. F. Thymidine kinase: evidence for its absence from Neurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J Gen Microbiol. 1968 Dec;54(2):307–317. doi: 10.1099/00221287-54-2-307. [DOI] [PubMed] [Google Scholar]
- Gross N. J., Rabinowitz M. Synthesis of new strands of mitochondrial and nuclear deoxyribonucleic acid by semiconservative replication. J Biol Chem. 1969 Mar 25;244(6):1563–1566. [PubMed] [Google Scholar]
- Hutchinson F. The lesions produced by ultraviolet light in DNA containing 5-bromouracil. Q Rev Biophys. 1973 May;6(2):201–246. doi: 10.1017/s0033583500001141. [DOI] [PubMed] [Google Scholar]
- Leff J., Lam K. B. Bromodeoxyuridine 5'-monophosphate incorporation into yeast nuclear and mitochondrial deoxyribonucleic acid. J Bacteriol. 1976 Jul;127(1):354–361. doi: 10.1128/jb.127.1.354-361.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Little J. W. The effect of 5-bromouracil on recombination of phage lambda. Virology. 1976 Jul 15;72(2):530–535. doi: 10.1016/0042-6822(76)90184-7. [DOI] [PubMed] [Google Scholar]
- Luk D. C., Bick M. D. Determination of 5'-bromodeoxyuridine in DNA by buoyant density. Anal Biochem. 1977 Feb;77(2):346–349. doi: 10.1016/0003-2697(77)90247-0. [DOI] [PubMed] [Google Scholar]
- MICHELSON A. M., DONDON J., GRUNBERG-MANAGO M. The action of polynucleotide phosphorylase on 5-halogenouridine-5' pyrophosphates. Biochim Biophys Acta. 1962 Apr 2;55:529–540. doi: 10.1016/0006-3002(62)90986-1. [DOI] [PubMed] [Google Scholar]
- Mattick J. S., Hall R. M. Replicative deoxyribonucleic acid synthesis in isolated mitochondria from Saccharomyces cerevisiae. J Bacteriol. 1977 Jun;130(3):973–982. doi: 10.1128/jb.130.3.973-982.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meselson M., Stahl F. W. THE REPLICATION OF DNA IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):671–682. doi: 10.1073/pnas.44.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prunell A., Goutorbe F., Strauss F., Bernardi G. Yield of restriction fragments from yeast mitochondrial DNA. J Mol Biol. 1977 Feb 15;110(1):47–52. doi: 10.1016/s0022-2836(77)80097-1. [DOI] [PubMed] [Google Scholar]
- Reich E., Luck D. J. Replication and inheritance of mitochondrial DNA. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1600–1608. doi: 10.1073/pnas.55.6.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards O. C., Ryan R. S. Synthesis and turnover of Euglena gracilis mitochondrial DNA. J Mol Biol. 1974 Jan 5;82(1):57–75. doi: 10.1016/0022-2836(74)90574-9. [DOI] [PubMed] [Google Scholar]
- Rownd R. Replication of a bacterial episome under relaxed control. J Mol Biol. 1969 Sep 28;44(3):387–402. doi: 10.1016/0022-2836(69)90368-4. [DOI] [PubMed] [Google Scholar]
- Sena E. P., Welch J. W., Halvorson H. O., Fogel S. Nuclear and mitochondrial deoxyribonucleic acid replication during mitosis in Saccharomyces cerevisiae. J Bacteriol. 1975 Aug;123(2):497–504. doi: 10.1128/jb.123.2.497-504.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sena E., Welch J., Fogel S. Nuclear and mitochondrial DNA replication during zygote formation and maturation in yeast. Science. 1976 Oct 22;194(4263):433–435. doi: 10.1126/science.790566. [DOI] [PubMed] [Google Scholar]
- Vlachopoulou P. J., Sadowksi P. D. Genetic recombination of bacteriophage T7 DNA in vitro III. A physical assay for recombinant DNA. Virology. 1977 May 1;78(1):203–215. doi: 10.1016/0042-6822(77)90092-7. [DOI] [PubMed] [Google Scholar]
- Wells J. R. Mitochondrial DNA synthesis during the cell cycle of Saccharomyces cerevisiae. Exp Cell Res. 1974 Apr;85(2):278–286. doi: 10.1016/0014-4827(74)90128-1. [DOI] [PubMed] [Google Scholar]
- Wickner R. B. Mutants of Saccharomyces cerevisiae that incorporate deoxythymidine 5'-monophosphate into DNA in vivo. Methods Cell Biol. 1975;11:295–302. doi: 10.1016/s0091-679x(08)60330-1. [DOI] [PubMed] [Google Scholar]