Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Aug;135(2):476–482. doi: 10.1128/jb.135.2.476-482.1978

Relationship of R6K replicating forms to the folded chromosome of Escherichia coli.

E R Archibold, C W Clark, R J Sheehy
PMCID: PMC222406  PMID: 355229

Abstract

An examination of the relationship of both nonreplicating and replicating forms of R6K plasmid DNA to the Escherichia coli folded chromosome showed that both forms cosediment with the chromosome in neutral sucrose gradients. Approximately 20% of the nonreplicatin molecules was found as freely sedimenting forms when the folded-configuration of the chromosomes was preserved. However, under the same conditions negligible amounts of the replicating forms were found as freely sedimenting molecules. Thus, it is concluded that the replicating forms, when compared with nonreplicating molecules, are preferentially associated with the folded chromosomal structure. Exposure of the folded chromosomal structure to RNase resulted in an unfolding of the chromosome and a concomitant increase in the amount of freely sedimenting replicating and nonreplicating forms of R6K DNA. Analyses of the single-stranded length of RNase-released nascent molecules suggest that they replicate in continuous association with the folded chromsome complex. Nonenzymatic unfolding of the chromosomes by progressively lowering the sodium ion concentration during lysis resulted in a progressive increase in the release of nonreplicating molecules. Replicating molecules wer not released by unfolding the chromosome in this fashion.

Full text

PDF
476

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAIRNS J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol. 1963 Mar;6:208–213. doi: 10.1016/s0022-2836(63)80070-4. [DOI] [PubMed] [Google Scholar]
  2. Crosa J. H., Luttropp L. K., Falkow S. Mode of replication of the conjugative R-plasmid RSF1040 in Escherichia coli. J Bacteriol. 1976 Apr;126(1):454–466. doi: 10.1128/jb.126.1.454-466.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drabkin D. L. Heme binding and transport--a spectrophotometric study of plasma glycoglobulin hemochromogens. Proc Natl Acad Sci U S A. 1971 Mar;68(3):609–613. doi: 10.1073/pnas.68.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kline B. C., Miller J. R., Cress D. E., Wlodarczyk M., Manis J. J., Otten M. R. Nonintegrated plasmid-chromosome complexes in Escherichia coli. J Bacteriol. 1976 Aug;127(2):881–889. doi: 10.1128/jb.127.2.881-889.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kline B. C., Miller J. R. Detection of nonintegrated plasmid deoxyribonucleic acid in the folded chromosome of Escherichia coli: physiochemical approach to studying the unit of segregation. J Bacteriol. 1975 Jan;121(1):165–172. doi: 10.1128/jb.121.1.165-172.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kupersztoch-Portnoy Y. M., Lovett M. A., Helinski D. R. Strand and site specificity of the relaxation event for the relaxation complex of the antibiotic resistance plasmid R6K. Biochemistry. 1974 Dec 31;13(27):5484–5490. doi: 10.1021/bi00724a005. [DOI] [PubMed] [Google Scholar]
  7. Lovett M. A., Sparks R. B., Helinski D. R. Bidirectional replication of plasmid R6K DNA in Escherichia coli; correspondence between origin of replication and position of single-strand break in relaxed complex. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2905–2909. doi: 10.1073/pnas.72.8.2905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  9. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  10. Sheehy R. J., Novick R. P. Studies on plasmid replication. V Replicative intermediates. J Mol Biol. 1975 Apr 5;93(2):237–253. doi: 10.1016/0022-2836(75)90130-8. [DOI] [PubMed] [Google Scholar]
  11. Taichman L., Rownd R. H. Differential association of F' plasmid and R plasmid deoxyribonucleic acid with a rapidly sedimenting fraction of a Proteus mirabilis lysate. J Bacteriol. 1977 Jun;130(3):1262–1273. doi: 10.1128/jb.130.3.1262-1273.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wlodarczyk M., Kline B. C. Association of R6K plasmid replicative intermediates with the folded chromosome of Escherichia coli. Biochem Biophys Res Commun. 1976 Nov 22;73(2):286–292. doi: 10.1016/0006-291x(76)90705-1. [DOI] [PubMed] [Google Scholar]
  13. Worcel A., Burgi E. On the structure of the folded chromosome of Escherichia coli. J Mol Biol. 1972 Nov 14;71(2):127–147. doi: 10.1016/0022-2836(72)90342-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES