Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1957 Nov 25;3(6):949–975. doi: 10.1083/jcb.3.6.949

MICROSPECTROPHOTOMETRY OF CELL NUCLEI STAINED WITH THE FEULGEN REACTION

IV. FORMATION OF TETRAPLOID NUCLEI IN RAT LIVER CELLS DURING POSTNATAL GROWTH

Hiroto Naora 1
PMCID: PMC2224127  PMID: 13481028

Abstract

1. DNA contents of the individual parenchymal nuclei of rat livers during postnatal growth were estimated by microspectrophotometric apparatus, and different ploidy classes of nuclei were classified by their DNA contents. With the same material the total number of parenchymal nuclei in the liver was counted microscopically. 2. If the DNA content of nuclei encountered most frequently in several tissues represents the diploid class, the ploidy classes of the rat liver cell nuclei correspond to di-, tri-, tetra-, and octoploid, with the di- and tetraploid ones predominating considerably. 3. In suckling rats (below 25 gm. of body weight) the liver parenchyma is composed almost exclusively of cells with diploid nuclei, whereas in young rats (above 80 gm.), of tetraploid nuclei. In the growth stage between 25 and 80 gm., there is a remarkable replacement of the diploid nuclei by the tetraploid ones. However, in the liver of adult rats weighing more than 150 gm., any increase or decrease in the frequency of diploid and tetraploid nuclei is hardly observable. In such rats, the nuclear population of the liver parenchyma seems to reach a cell-ecological equilibrium which is considered to be a stable one. 4. It is shown that such nuclear populations and the total number of nuclei in a liver are controlled by the growth state, and not by the age. 5. The decrease in the total number of diploid nuclei and the increase in tetraploid nuclei in the growing livers of rats weighing from 40 up to 130 gm. can both be explained by the hypothesis that the tetraploid nuclei originate from the interphase diploid nuclei without involving mitosis. This hypothesis implies that mitosis is confined to the reproduction of diploid cells alone. 6. It is suggested that, in general, the synthesis of DNA does not necessarily result in the formation of visible mitotic chromosomes. 7. Mitotic time and generation time of diploid nuclei and the percentage of the tetraploidization from diploid nuclei are calculated and discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALFERT M., SWIFT H. Nuclear DNA constancy: a critical evaluation of some exceptions reported by Lison and Pasteels. Exp Cell Res. 1953 Dec;5(2):455–460. doi: 10.1016/0014-4827(53)90232-8. [DOI] [PubMed] [Google Scholar]
  2. BADER S. Distribution of desoxyribose nucleic acid in tumor nuclei. Proc Soc Exp Biol Med. 1953 Feb;82(2):312–315. doi: 10.3181/00379727-82-20103. [DOI] [PubMed] [Google Scholar]
  3. BIBATANI A., NAORA H. Enhancement of colour intensity in the histochemical Feulgen reaction; method and quantitative estimation. Experientia. 1952 Jul 15;8(7):268–269. doi: 10.1007/BF02301390. [DOI] [PubMed] [Google Scholar]
  4. BLOCH D. P. Effect of colchicine on synthesis of desoxyribonucleic acid in tissue cultured rat fibroblasts. Proc Soc Exp Biol Med. 1953 Nov;84(2):341–346. doi: 10.3181/00379727-84-20641. [DOI] [PubMed] [Google Scholar]
  5. BLOCH D. P., GODMAN G. C. Evidence of differences in the desoxyribonucleoprotein complex of rapidly proliferating and non-dividing cells. J Biophys Biochem Cytol. 1955 Nov 25;1(6):531–550. doi: 10.1083/jcb.1.6.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BRYAN J. H. D. DNA-Protein relations during microsporogenesis of Tradescantia. Chromosoma. 1951 Aug;4(4):369–392. doi: 10.1007/BF00325780. [DOI] [PubMed] [Google Scholar]
  7. DI STEFANO H. S., DIERMEIER H. F. Effects of hypophysectomy and growth hormone on ploidy distribution and mitotic activity of rat liver. Proc Soc Exp Biol Med. 1956 Jul;92(3):590–593. doi: 10.3181/00379727-92-22553. [DOI] [PubMed] [Google Scholar]
  8. FAUTREZ J., FAUTREZ-FIRLEFYN N. Deoxyribonucleic acid content of the cell nucleus and mitosis. Nature. 1953 Jul 18;172(4368):119–120. doi: 10.1038/172119b0. [DOI] [PubMed] [Google Scholar]
  9. FAUTREZ J., PISI E., CAVALLI G. Deoxyribonucleic acid content of the nucleus and nuclear volume. Nature. 1955 Aug 13;176(4476):311–312. doi: 10.1038/176311a0. [DOI] [PubMed] [Google Scholar]
  10. HARRISON M. F. Relation between polyploidy and the amounts of deoxynucleic acid per nucleus in the liver and kidney of adult rats. Nature. 1951 Aug 11;168(4267):248–249. doi: 10.1038/168248a0. [DOI] [PubMed] [Google Scholar]
  11. KIHARA H. K., SIBATANI A. Stability of deoxypentosenucleic acid phosphorus (DNA-P) in growing tissue. Biochim Biophys Acta. 1955 Aug;17(4):579–580. doi: 10.1016/0006-3002(55)90421-2. [DOI] [PubMed] [Google Scholar]
  12. KLEIN R. M., RASCH E. M., SWIFT H. Nucleic acids and tumor genesis in broad bean. Cancer Res. 1953 Jul;13(71):499–502. [PubMed] [Google Scholar]
  13. LECOMTE C., DE SMUL A. Effet du régime hypoproteique sur la teneur en acide désoxyribonucléique des noyaux hépatiques chez le rat jeune. C R Hebd Seances Acad Sci. 1952 Mar 24;234(13):1400–1402. [PubMed] [Google Scholar]
  14. LEUCHTENBERGER C. Critical evaluation of Feulgen microspectrophotometry for estimating amount of DNA in cell nuclei. Science. 1954 Dec 17;120(3129):1022–1023. doi: 10.1126/science.120.3129.1022. [DOI] [PubMed] [Google Scholar]
  15. LEUCHTENBERGER C., LEUCHTENBERGER R., DAVIS A. M. A microspectrophotometric study of the desoxyribose nucleic acid (DNA) content in cells of normal and malignant human tissues. Am J Pathol. 1954 Jan-Feb;30(1):65–85. [PMC free article] [PubMed] [Google Scholar]
  16. LEUCHTENBERGER C., VENDRELY R., VENDRELY C. A comparison of the content of desoxyribosenucleic acid (DNA) in isolated animal nuclei by cytochemical and chemical methods. Proc Natl Acad Sci U S A. 1951 Jan;37(1):33–38. doi: 10.1073/pnas.37.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LISON L. Schwarzschild-Villiger effect in microspectrophotometry. Science. 1953 Oct 2;118(3066):382–383. doi: 10.1126/science.118.3066.382. [DOI] [PubMed] [Google Scholar]
  18. LUSHBAUGH C. C. Morphologic methods of determining cellular doubling times; a review. J Histochem Cytochem. 1956 Nov;4(6):499–507. doi: 10.1177/4.6.499. [DOI] [PubMed] [Google Scholar]
  19. McKELLAR M. The postnatal growth and mitotic activity of the liver of the albino rat. Am J Anat. 1949 Sep;85(2):263-307, incl 6 pl. doi: 10.1002/aja.1000850205. [DOI] [PubMed] [Google Scholar]
  20. NAORA H. Microspectrophotometry and cytochemical analysis of nucleic acids. Science. 1951 Sep 14;114(2959):279–280. doi: 10.1126/science.114.2959.279. [DOI] [PubMed] [Google Scholar]
  21. NAORA H. Microspectrophotometry of cell nuclei stained with Feulgen reaction. III. The DNA content of individual nuclei of rat tissues in the postnatal growth. Exp Cell Res. 1957 Feb;12(1):1–14. doi: 10.1016/0014-4827(57)90290-2. [DOI] [PubMed] [Google Scholar]
  22. NAORA H. Microspectrophotometry of cell nucleus stained by feulgen reaction. I. Microspectrophotometric apparatus without Schwarzschild-Villiger effect. Exp Cell Res. 1955 Apr;8(2):259–278. doi: 10.1016/0014-4827(55)90141-5. [DOI] [PubMed] [Google Scholar]
  23. NAORA H. Schwarzschild-Villiger effect in microspectrophotometry. Science. 1952 Feb 29;115(2983):248–249. doi: 10.1126/science.115.2983.248. [DOI] [PubMed] [Google Scholar]
  24. Ornstein L., Pollister A. W. Schwarzschild-Villiger Effect in Microspectrophotometry. Science. 1952 Aug 22;116(3008):203–204. doi: 10.1126/science.116.3008.203. [DOI] [PubMed] [Google Scholar]
  25. PETRAKIS N. L., FOLSTAD L. J. Desoxyribonucleic acid content of individual lymphoma #1 and #2 tumor cells as determined by Feulgen microspectrophotometry. J Natl Cancer Inst. 1954 Aug;15(1):63–66. doi: 10.1093/jnci/15.1.63. [DOI] [PubMed] [Google Scholar]
  26. RASCH E. M., SWIFT H., SCHWEIGERT B. S. Liver nucleoproteins in vitamin B12 deficiency. Proc Soc Exp Biol Med. 1955 Apr;88(4):637–640. doi: 10.3181/00379727-88-21678. [DOI] [PubMed] [Google Scholar]
  27. RIS H., MIRSKY A. E. Quantitative cytochemical determination of desoxyribonucleic acid with the Feulgen nucleal reaction. J Gen Physiol. 1949 Nov;33(2):125–146. doi: 10.1085/jgp.33.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SIBATANI A. Feulgen reaction and quantitative cytochemistry of desoxypentose nucleic acid. V. Chemical determination of colour intensity of the reaction in situ. Biochim Biophys Acta. 1954 Jan;13(1):66–71. doi: 10.1016/0006-3002(54)90272-3. [DOI] [PubMed] [Google Scholar]
  29. SIBATANI A., NAORA H. Feulgen reaction and quantitative cytochemistry of desoxypentose nucleic acid. IV. Microspectrophotometric study of the Feulgen reaction in situ. Biochim Biophys Acta. 1953 Dec;12(4):515–521. doi: 10.1016/0006-3002(53)90182-6. [DOI] [PubMed] [Google Scholar]
  30. SWARTZ F. J. The development in the human liver of multiple desoxyribose nucleic acid (DNA) classes and their relationship to the age of the individual. Chromosoma. 1956;8(1):53–72. doi: 10.1007/BF01259493. [DOI] [PubMed] [Google Scholar]
  31. SWIFT H. H. The desoxyribose nucleic acid content of animal nuclei. Physiol Zool. 1950 Jul;23(3):169–198. doi: 10.1086/physzool.23.3.30152074. [DOI] [PubMed] [Google Scholar]
  32. Schrader F., Leuchtenberger C. Variation in the Amount of Desoxyribose Nucleic Acid in Different Tissues of Tradescantia. Proc Natl Acad Sci U S A. 1949 Aug;35(8):464–468. doi: 10.1073/pnas.35.8.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. TAYLOR J. H., McMASTER R. D. Autoradiographic and microphotometric studies of desoxyribose nucleic acid during microgametogenesis in Lilium longiflorum. Chromosoma. 1954;6(6-7):489–521. doi: 10.1007/BF01259951. [DOI] [PubMed] [Google Scholar]
  34. THOMSON R. Y., FRAZER S. C. The deoxyribonucleic acid content of individual rat cell nuclei. Exp Cell Res. 1954 May;6(2):367–383. doi: 10.1016/0014-4827(54)90185-8. [DOI] [PubMed] [Google Scholar]
  35. THOMSON R. Y., HEAGY F. C., HUTCHISON W. C., DAVIDSON J. N. The deoxyribonucleic acid content of the rat cell nucleus and its use in expressing the results of tissue analysis, with particular reference to the composition of liver tissue. Biochem J. 1953 Feb;53(3):460–474. doi: 10.1042/bj0530460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. WALKER P. M. B., YATES H. B. Nuclear components of dividing cells. Proc R Soc Lond B Biol Sci. 1952 Oct 16;140(899):274–299. doi: 10.1098/rspb.1952.0062. [DOI] [PubMed] [Google Scholar]
  37. WIDNER W. R., STORER J. B., LUSHBAUGH C. C. The use of x-ray and nitrogen mustard to determine the mitotic and intermitotic times in normal and malignant rat tissues. Cancer Res. 1951 Nov;11(11):877–884. [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES