Abstract
In sections of KMnO4-fixed, developing mouse sciatic nerves, the central gap of mesaxons in myelinating fibers is normally closed with close apposition of the outside ∼20 A dense strata of the two ∼75 A Schwann cell membranes. The two combined outside strata make the intraperiod line bisecting each myelin lamella. The ∼150 A mesaxon is elaborated spirally around the axon in either a right hand or left hand spiral, and its inside (cytoplasmic) ∼20 A strata in apposition form the major dense lines of myelin. In hypotonic solutions the lamellae of adult frog sciatic myelinated fibers split apart along the outside membrane strata apposed at the intraperiod line throughout the spiral. Under similar conditions the inside (cytoplasmic) strata of the membranes, in apposition at the major dense lines, do not separate. The ∼150 A membranous structure resulting from this is called an "internal compound membrane." The double membranes of normal and control frog sciatic unmyelinated fibers have a central gap ∼100 to 150 A wide. After soaking in 4 to 10 times normal strength Ringer solution or 10 N sucrose-Ringer solution, this gap closes and a membranous structure ∼150 A wide resembling developing mouse mesaxons results. This is designated by the term "external compound membrane." The latter membranes resemble internal compound membranes, but their central dense zones, each consisting of two apposed outside membrane strata, are less dense.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
- BIRBECK M. S., MERCER E. H. The electron microscopy of the human hair follicle. I. Introduction and the hair cortex. J Biophys Biochem Cytol. 1957 Mar 25;3(2):203–214. doi: 10.1083/jcb.3.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRBECK M. S., MERCER E. H. The electron microscopy of the human hair follicle. II. The hair cuticle. J Biophys Biochem Cytol. 1957 Mar 25;3(2):215–222. doi: 10.1083/jcb.3.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRBECK M. S., MERCER E. H. The electron microscopy of the human hair follicle. III. The inner root sheath and trichohyaline. J Biophys Biochem Cytol. 1957 Mar 25;3(2):223–230. doi: 10.1083/jcb.3.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FINEAN J. B. Further observations on the structure of myelin. Exp Cell Res. 1953 Sep;5(1):202–215. doi: 10.1016/0014-4827(53)90106-2. [DOI] [PubMed] [Google Scholar]
- FINEAN J. B. The effects of freeze-drying on the molecular organisation in nerve myelin. Exp Cell Res. 1955 Aug;9(1):181–182. doi: 10.1016/0014-4827(55)90173-7. [DOI] [PubMed] [Google Scholar]
- FINEAN J. B. The effects of osmium tetroxide fixation on the structure of myelin in sciatic nerve. Exp Cell Res. 1954 May;6(2):283–292. doi: 10.1016/0014-4827(54)90175-5. [DOI] [PubMed] [Google Scholar]
- GASSER H. S. Properties of dorsal root unmedullated fibers on the two sides of the ganglion. J Gen Physiol. 1955 May 20;38(5):709–728. doi: 10.1085/jgp.38.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLAUERT A. M., GLAUERT R. H., ROGERS G. E. A new embedding medium for electron microscopy. Nature. 1956 Oct 13;178(4537):803–803. doi: 10.1038/178803a0. [DOI] [PubMed] [Google Scholar]
- LUFT J. H. Permanganate; a new fixative for electron microscopy. J Biophys Biochem Cytol. 1956 Nov 25;2(6):799–802. doi: 10.1083/jcb.2.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. D. New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1043–1048. doi: 10.1083/jcb.3.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. D. Some features of the ultrastructure of reptilian skeletal muscle. J Biophys Biochem Cytol. 1956 Jul 25;2(4):369–380. doi: 10.1083/jcb.2.4.369. [DOI] [PubMed] [Google Scholar]
- ROBERTSON J. D. The ultrastructure of Schmidt-Lanterman clefts and related shearing defects of the myelin sheath. J Biophys Biochem Cytol. 1958 Jan 25;4(1):39–46. doi: 10.1083/jcb.4.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. D. The ultrastructure of adult vertebrate peripheral myelinated nerve fibers in relation to myelinogenesis. J Biophys Biochem Cytol. 1955 Jul 25;1(4):271–278. doi: 10.1083/jcb.1.4.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. D. The ultrastructure of frog muscle spindles, motor endings and nerve fibres. J Physiol. 1957 Jun 18;137(1):6–8P. [PubMed] [Google Scholar]
- ROBERTSON J. D. The ultrastructure of nodes of Ranvier in frog nerve fibres. J Physiol. 1957 Jun 18;137(1):8–9P. [PubMed] [Google Scholar]
- ROTHSCHILD The membrane capacitance of the sea urchin egg. J Biophys Biochem Cytol. 1957 Jan 25;3(1):103–110. doi: 10.1083/jcb.3.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]