Abstract
Methods are presented for the intramitochondrial localization of various diphosphopyridine nucleotide and triphosphopyridine nucleotide-linked dehydrogenases in tissue sections. The cytochemical reactions studied involve the oxidation of the substrates by a specific pyridino-protein. The electron transfer of tetrazolium salt is mediated by the diaphorase system associated with the dehydrogenase. The final electron acceptor was either p-nitrophenyl substituted ditetrazole (nitro-BT) or N-thiazol-2-yl monotetrazole (MTT), the latter giving rise to metal formazan in the presence of cobaltous ions. Mitochondrial localization of the formazan precipitate could be achieved by using hypertonic incubating media containing high concentrations of substrate and co-enzyme. A fast reduction of tetrazolium salt was obtained by chemically blocking the respiratory chain enzymes beyond the flavoproteins. Although diaphorase systems are implicated in the reduction of tetrazolium salts, specific dehydrogenases are solely responsible for the distinct distribution pattern obtained in tissues with various substrates. The present findings in tissue sections are discussed in conjunction with existing biochemical evidence from differential centrifugation experiments.
Full Text
The Full Text of this article is available as a PDF (836.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMOORE J. E., BARTLEY W. The permeability of isolated rat-liver mitochondria to sucrose, sodium chloride and potassium chloride at 0 degrees. Biochem J. 1958 Jun;69(2):223–236. doi: 10.1042/bj0690223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARANOWSKI T. Crystalline glycerophosphate dehydrogenase from rabbit muscle. J Biol Chem. 1949 Sep;180(2):535–541. [PubMed] [Google Scholar]
- CORI O., LIPMANN F. The primary oxidation product of enzymatic glucose-6-phosphate oxidation. J Biol Chem. 1952 Jan;194(1):417–425. [PubMed] [Google Scholar]
- DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ERNSTER L., JALLING O., LOW H., LINDBERG O. Alternative pathways of mitochondrial DPNH oxidation, studied with amytal. Exp Cell Res. 1955;(Suppl 3):124–132. [PubMed] [Google Scholar]
- ERNSTER L. Organization of mitochondrial DPN-linked systems. II. Regulation of alternative electron transfer pathways. Exp Cell Res. 1956 Jun;10(3):721–732. doi: 10.1016/0014-4827(56)90049-0. [DOI] [PubMed] [Google Scholar]
- FARBER E., STERNBERG W. H., DUNLAP C. E. Histochemical localization of specific oxidative enzymes. I. Tetrazolium stains for diphosphopyridine nucleotide diaphorase and triphosphopyridine nucleotide diaphorase. J Histochem Cytochem. 1956 May;4(3):254–265. doi: 10.1177/4.3.254. [DOI] [PubMed] [Google Scholar]
- GLOCK G. E., McLEAN P. Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochem J. 1953 Oct;55(3):400–408. doi: 10.1042/bj0550400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HESS R., SCARPELLI D. G., PEARSE A. G. Cytochemical localization of pyridine nucleotide-linked dehydrogenases. Nature. 1958 May 31;181(4622):1531–1532. doi: 10.1038/1811531a0. [DOI] [PubMed] [Google Scholar]
- HOGEBOOM G. H., SCHNEIDER W. C. Cytochemical studies of mammalian tissues. III. Isocitric dehydrogenase and triphosphopyridine nucleotide-cytochrome c reductase of mouse liver. J Biol Chem. 1950 Oct;186(2):417–427. [PubMed] [Google Scholar]
- HOGEBOOM G. H., SCHNEIDER W. C. Intracellular distribution of enzymes. XI. Glutamic dehydrogenase. J Biol Chem. 1953 Sep;204(1):233–238. [PubMed] [Google Scholar]
- HORECKER B. L., SMYRNIOTIS P. Z. Phosphogluconic acid dehydrogenase from yeast. J Biol Chem. 1951 Nov;193(1):371–381. [PubMed] [Google Scholar]
- KAPLAN N. O., CIOTTI M. M. Competitive inhibition of hydroxylamine on alcohol dehydrogenase. J Biol Chem. 1953 Apr;201(2):785–794. [PubMed] [Google Scholar]
- KAPLAN N. O., COLOWICK S. P., BARNES C. C. Effect of alkali on diphosphopyridine nucleotide. J Biol Chem. 1951 Aug;191(2):461–472. [PubMed] [Google Scholar]
- LEHNINGER A. L., GREVILLE G. D. The enzymic oxidation of alpha- and 2-beta-hydroxybutyrate. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):188–202. doi: 10.1016/0006-3002(53)90138-3. [DOI] [PubMed] [Google Scholar]
- LEHNINGER A. L., SMITH S. W. Efficiency of phosphorylation coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen. J Biol Chem. 1949 Nov;181(1):415–429. [PubMed] [Google Scholar]
- NACHLAS M. M., TSOU K. C., DE SOUZA E., CHENG C. S., SELIGMAN A. M. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem. 1957 Jul;5(4):420–436. doi: 10.1177/5.4.420. [DOI] [PubMed] [Google Scholar]
- NACHLAS M. M., WALKER D. G., SELIGMAN A. M. A histochemical method for the demonstration of diphosphopyridine nucleotide diaphorase. J Biophys Biochem Cytol. 1958 Jan 25;4(1):29–38. doi: 10.1083/jcb.4.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEARSE A. G. Intracellular localisation of dehydrogenase systems using monotetrazolium salts and metal chelation of their formazans. J Histochem Cytochem. 1957 Sep;5(5):515–527. doi: 10.1177/5.5.515. [DOI] [PubMed] [Google Scholar]
- PEARSE A. G., SCARPELLI D. G. Cytochemical localization of succinic dehydrogenase in mitochondria from Periplaneta americana. Nature. 1958 Mar 8;181(4610):702–703. doi: 10.1038/181702a0. [DOI] [PubMed] [Google Scholar]
- PLAUT G. W., SUNG S. C. Diphosphopyridine nucleotide isocitric dehydrogenase from animal tissues. J Biol Chem. 1954 Mar;207(1):305–314. [PubMed] [Google Scholar]
- PORTER V. S., DEMING N. P., WRIGHT R. C., SCOTT E. M. Effects of freezing on particulate enzymes of rat liver. J Biol Chem. 1953 Dec;205(2):883–891. [PubMed] [Google Scholar]
- RACKER E. Aldehyde dehydrogenase, a diphosphopyridine nucleotide-linked enzyme. J Biol Chem. 1949 Feb;177(2):883–892. [PubMed] [Google Scholar]
- RACKER E. Mechanism of action and properties of pyridine nucleotide-linked enzymes. Physiol Rev. 1955 Jan;35(1):1–56. doi: 10.1152/physrev.1955.35.1.1. [DOI] [PubMed] [Google Scholar]
- SCARPELLI D. G., HESS R., PEARSE A. G. The cytochemical localization of oxidative enzymes. I. Diphosphopyridine nucleotide diaphorase and triphosphopyridine nucleotide diaphorase. J Biophys Biochem Cytol. 1958 Nov 25;4(6):747–752. doi: 10.1083/jcb.4.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STERNBERG W. H., FARBER E., DUNLAP C. E. Histochemical localization of specific oxidative enzymes. II. Localization of diphosphopyridine nucleotide and triphosphopyridine nucleotide diaphorases and the succindehydrogenase system in the kidney. J Histochem Cytochem. 1956 May;4(3):266–283. doi: 10.1177/4.3.266. [DOI] [PubMed] [Google Scholar]