Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671

Electron Microscope Study of DNA-Containing Plasms

II. Vegetative and Mature Phage DNA as Compared with Normal Bacterial Nucleoids in Different Physiological States

Edouard Kellenberger 1, Antoinette Ryter 1, Janine Séchaud 1
PMCID: PMC2224514  PMID: 13610928

Abstract

The nucleoids of Escherichia coli, independently of the physiological state of the bacteria, are shown to be preserved as a fine-stranded fibrillar nucleoplasm by an OsO4 fixation under defined conditions: acetate-veronal buffer pH 6, presence of Ca++ and amino acids, stabilization with uranyl-acetate before dehydration. The same fixation procedure applied to the DNA of vegetative phage reveals a pool of homogeneous fibrillar structure very similar to the nucleoplasm. The "versene test," which produces a coarse coagulation of these plasms, emphasizes the similar behaviour of the pool and the nucleoids. The heads of mature phage are preserved in their true polyhedral shape by the standard fixation procedure, although they may be badly distorted when fixed under different conditions. Lanthanum nitrate and uranyl-acetate are shown to increase markedly the contrast of both phage and cytoplasm. The consequences of the fibrillar structure of the genetic material are discussed in relation to the probable division process.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T., ROSENTHAL S. M. Presence of polyamines in certain bacterial viruses. Science. 1958 Apr 11;127(3302):814–815. doi: 10.1126/science.127.3302.814-a. [DOI] [PubMed] [Google Scholar]
  2. ANDERSON T. F., MAZE R. Analyse de la descendance de zygotes formés par conjugaison chez Escherichia coli K12. Ann Inst Pasteur (Paris) 1957 Aug;93(2):194–198. [PubMed] [Google Scholar]
  3. ANDERSON T. F. The morphology and osmotic properties of bacteriophage systems. Cold Spring Harb Symp Quant Biol. 1953;18:197–203. doi: 10.1101/sqb.1953.018.01.030. [DOI] [PubMed] [Google Scholar]
  4. BAHR G. F. Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Electron stains. III. Exp Cell Res. 1954 Nov;7(2):457–479. doi: 10.1016/s0014-4827(54)80091-7. [DOI] [PubMed] [Google Scholar]
  5. BONIFAS V., KELLENBERGER E. Etude de l'action des membranes du bactériophage T2 sur Escherichia coli. Biochim Biophys Acta. 1955 Mar;16(3):330–338. doi: 10.1016/0006-3002(55)90234-1. [DOI] [PubMed] [Google Scholar]
  6. DE ROBERTIS E. Electron microscopic observations on the submicroscopic morphology of the meiotic nucleus and chromosomes. J Biophys Biochem Cytol. 1956 Nov 25;2(6):785–796. doi: 10.1083/jcb.2.6.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doermann A. H. Lysis and Lysis Inhibition with Escherichia coli Bacteriophage. J Bacteriol. 1948 Feb;55(2):257–276. doi: 10.1128/jb.55.2.257-276.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):493–498. doi: 10.1042/bj0530493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRELL K. G., WOHLFARTH-BOTTERMANN K. E. Licht- und elektronenmikroskopische Untersuchungen an dem Dinoflagellaten Amphidinium elegans n. sp. Z Zellforsch Mikrosk Anat. 1957;47(1):7–17. [PubMed] [Google Scholar]
  10. HAHN F. E., SCHAECHTER M., CEGLOWSKI W. S., HOPPS H. E., CIAK J. Interrelations between nucleic acid and protein biosynthesis. I. Synthesis and fate of bacterial nucleic acids during exposure to, and recovery from the action of chloramphenicol. Biochim Biophys Acta. 1957 Dec;26(3):469–476. doi: 10.1016/0006-3002(57)90092-6. [DOI] [PubMed] [Google Scholar]
  11. HERRIOTT R. M., BARLOW J. L. Preparation, purification, and properties of E. coli virus T2. J Gen Physiol. 1952 May;36(1):17–28. doi: 10.1085/jgp.36.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HERSHEY A. D., MELECHEN N. E. Synthesis of phage-precursor nucleic acid in the presence of chloramphenicol. Virology. 1957 Feb;3(1):207–236. doi: 10.1016/0042-6822(57)90034-x. [DOI] [PubMed] [Google Scholar]
  13. KELLENBERGER E., RYTER A. Contribution à l'étude du noyau bactérien. Schweiz Z Pathol Bakteriol. 1955;18(5):1122–1137. [PubMed] [Google Scholar]
  14. KELLENBERGER E., RYTER A. Fixation et inclusion du matériel nucléaire de Escherichia coli. Experientia. 1956 Nov 15;12(11):420–421. doi: 10.1007/BF02157362. [DOI] [PubMed] [Google Scholar]
  15. KELLENBERGER E., RYTER A., SCHWAB W. L'utilisation d'un copolymère du groupe des polyesters comme matériel d'inclusion en ultramicrotomie. Experientia. 1956 Nov 15;12(11):421–422. doi: 10.1007/BF02157363. [DOI] [PubMed] [Google Scholar]
  16. KELLENBERGER E., SECHAUD J. Electron microscopical studies of phage multiplication. II. Production of phage-related structures during multiplication of phages T2 and T4. Virology. 1957 Apr;3(2):256–274. doi: 10.1016/0042-6822(57)90092-2. [DOI] [PubMed] [Google Scholar]
  17. KELLENBERGER E. Ultramikrotom mit mechanischem Vorschub. Experientia. 1956 Jul 15;12(7):282–283. [PubMed] [Google Scholar]
  18. KELLENBERGER G., KELLENBERGER E. Electron microscopical studies of phage multiplication. III. Observation of single cell bursts. Virology. 1957 Apr;3(2):275–285. doi: 10.1016/0042-6822(57)90093-4. [DOI] [PubMed] [Google Scholar]
  19. LURIA S. E., HUMAN M. L. Chromatin staining of bacteria during bacteriophage infection. J Bacteriol. 1950 Apr;59(4):551–560. doi: 10.1128/jb.59.4.551-560.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lederberg J. SIBLING RECOMBINANTS IN ZYGOTE PEDIGREES OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1957 Dec 15;43(12):1060–1065. doi: 10.1073/pnas.43.12.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levinthal C., Crane H. R. ON THE UNWINDING OF DNA. Proc Natl Acad Sci U S A. 1956 Jul;42(7):436–438. doi: 10.1073/pnas.42.7.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MAALØE O., BIRCH-ANDERSEN A., SJOSTRAND F. S. Electron micrographs of sections of E. coli cells infected with the bacteriophage T4. Biochim Biophys Acta. 1954 Sep;15(1):12–19. doi: 10.1016/0006-3002(54)90087-6. [DOI] [PubMed] [Google Scholar]
  23. MUDD S., HILLIER J., BEUTNER E. H., HARTMAN P. E. Light and electron microscopic studies of Escherichia coli-coliphage interactions. II. The electron microscopic cytology of the E. coli B-T2 system. Biochim Biophys Acta. 1953 Jan;10(1):153–179. doi: 10.1016/0006-3002(53)90224-8. [DOI] [PubMed] [Google Scholar]
  24. MURRAY R. G. E., GILLEN D. H., HEAGY F. C. Cytological changes in Escherichia coli produced by infection with phage T2. J Bacteriol. 1950 May;59(5):603–615. doi: 10.1128/jb.59.5.603-615.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. POWELL E. O. An outline of the pattern of bacterial generation times. J Gen Microbiol. 1958 Apr;18(2):382–417. doi: 10.1099/00221287-18-2-382. [DOI] [PubMed] [Google Scholar]
  26. ROBINOW C. F. The chromatin bodies of bacteria. Bacteriol Rev. 1956 Dec;20(4):207–242. doi: 10.1128/br.20.4.207-242.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. TOMIZAWA J. I., SUNAKAWA S. The effect of chloramphenicol on deoxyribonucleic acid synthesis and the development of resistance to ultraviolet irradiation in E. coli infected with bacteriophage T2. J Gen Physiol. 1956 Mar 20;39(4):553–565. doi: 10.1085/jgp.39.4.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Visconti N, Delbrück M. The Mechanism of Genetic Recombination in Phage. Genetics. 1953 Jan;38(1):5–33. doi: 10.1093/genetics/38.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WILLIAMS R. C., FRASER D. Morphology of the seven T-bacteriophages. J Bacteriol. 1953 Oct;66(4):458–464. doi: 10.1128/jb.66.4.458-464.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. WISSEMAN C. L., Jr, SMADEL J. E., HAHN F. E., HOPPS H. E. Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J Bacteriol. 1954 Jun;67(6):662–673. doi: 10.1128/jb.67.6.662-673.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES