Abstract
This cytochemical study demonstrates high levels of apparent ATPase activity in the infolded cell membranes of the proximal tubules (dog, rat, human, mouse, monkey, and opossum) and ascending loops of Henle (dog, rat, human and, to a variable degree, mouse). Electron microscopy has shown (see Rhodin (1)) that these membranes separate adjacent cells where they interlock with one another by multiple cytoplasmic lamellae containing oriented mitochondria. The significance of the high ATPase activity is considered in relation to possible movements of the membranes and to "active transport" believed to occur there. In the rat, enzyme activity in the proximal tubule membranes does not survive formol-calcium fixation, and it is therefore necessary to use unfixed sections for its demonstration. However, in edematous rats with experimental nephrosis (induced by the injection of aminonucleoside or with antikidney serum) marked ATPase activity is exhibited in these membranes even after formol-calcium fixation. When proximal tubule or Henle loop cells of the dog acquire an altered metabolism, as indicated by accumulated lipide spheres or by "droplets," the infolded ATPase-rich membranes are no longer demonstrable.
Full Text
The Full Text of this article is available as a PDF (958.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COONS A. H., LEDUC E. H., KAPLAN M. H. Localization of antigen in tissue cells. VI. The fate of injected foreign proteins in the mouse. J Exp Med. 1951 Feb;93(2):173–188. doi: 10.1084/jem.93.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen H. N., Noall M. W., Riggs T. R., Walker L. M. Transport of Molecules into Cells against a Concentration Gradient. Science. 1958 Jan 17;127(3290):163–163. doi: 10.1126/science.127.3290.163. [DOI] [PubMed] [Google Scholar]
- ESSNER E., NOVIKOFF A. B., MASEK B. Adenosinetriphosphatase and 5-nucleotidase activities in the plasma membrane of liver cells as revealed by electron microscopy. J Biophys Biochem Cytol. 1958 Nov 25;4(6):711–716. doi: 10.1083/jcb.4.6.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOORE D. H., RUSKA H. The fine structure of capillaries and small arteries. J Biophys Biochem Cytol. 1957 May 25;3(3):457–462. doi: 10.1083/jcb.3.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. 2. Effect of inhibitors and added cofactors. Biochem J. 1957 Dec;67(4):572–578. doi: 10.1042/bj0670572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOVIKOFF A. B. A transplantable rat liver tumor induced by 4-dimethylaminoazobenzene. Cancer Res. 1957 Nov;17(10):1010–1027. [PubMed] [Google Scholar]
- NOVIKOFF A. B., HAUSMAN D. H., PODBER E. The localization of adenosine triphosphatase in liver: in situ staining and cell fractionation studies. J Histochem Cytochem. 1958 Jan;6(1):61–71. doi: 10.1177/6.1.61. [DOI] [PubMed] [Google Scholar]
- OLIVER J., MACDOWELL M., LEE Y. C. Cellular mechanisms of protein metabolism in the nephron. I. The structural aspects of proteinuria; tubular absorption, droplet formation, and the disposal of proteins. J Exp Med. 1954 Jun 1;99(6):589–604. doi: 10.1084/jem.99.6.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PADYKULA H. A., HERMAN E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem. 1955 May;3(3):170–195. doi: 10.1177/3.3.170. [DOI] [PubMed] [Google Scholar]
- RUSKA H., MOORE D. H., WEINSTOCK J. The base of the proximal convoluted tubule cells of rat kidney. J Biophys Biochem Cytol. 1957 Mar 25;3(2):249–254. doi: 10.1083/jcb.3.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIEKEVITZ P., LOW H., ERNSTER L., LINDBERG O. On a possible mechanism of the adenosinetriphosphatase of liver mitochondria. Biochim Biophys Acta. 1958 Aug;29(2):378–391. doi: 10.1016/0006-3002(58)90197-5. [DOI] [PubMed] [Google Scholar]
- WACHSTEIN M. Histochemical staining reactions of the normally functioning and abnormal kidney. J Histochem Cytochem. 1955 Jul;3(4):246–270. doi: 10.1177/3.4.246. [DOI] [PubMed] [Google Scholar]
- WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
- WACHSTEIN M., MEISEL E. Influence of experimental renal damage on histochemically demonstrable succinic dehydrogenase activity in the rat. Am J Pathol. 1954 Jan-Feb;30(1):147–165. [PMC free article] [PubMed] [Google Scholar]
- WIRZ H. Der osmotische Druck des Blutes in der Nierenpapille. Helv Physiol Pharmacol Acta. 1953;11(1):20–29. [PubMed] [Google Scholar]