Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1958 Nov 25;4(6):807–830. doi: 10.1083/jcb.4.6.807

Fine Structure and Function in Stentor polymorphus

J T Randall 1, Sylvia Fitton Jackson 1
PMCID: PMC2224530  PMID: 13610947

Abstract

The fine structure of the ciliate Stentor has been studied by means of the electron microscope and the results have been correlated with observations made on the living organism by means of light microscopy; special reference has been made to structural features which may be responsible for contraction and extension in Stentor. Descriptions have been given of the structure of the macronucleus, the vacuolated cytoplasm, mitochondria and the pellicle; a detailed study has also been made of the adoral membranelles. About 250 membranelles encircle the peristomal cap and each is composed of 3 rows of cilia, with 20 to 25 cilia in each row; a fibrillar root system connected with the membranelles depends into the endoplasm for about 20 µ and each is essentially in the shape of a fan, the terminal ends of each root bifurcating to connect to neighbouring roots. The membranelles thus form a cohesive unit and this morphological arrangement may have a bearing on the motion and coordination of the whole system. Two structural features extending throughout the length of the animal have been identified per cortical stripe in the body wall of Stentor; first, km fibres lying just beneath the pellicle are composed of stacks of fibrillar sheets and are identical with the birefringent fibres observed in the living animal. The individual fibrils of the sheets are in turn connected to the kinetosomes of the body cilia; thus the km fibres are homologous to kinetodesmata. Secondly, M bands lie beneath the km fibres and form an interconnected system in contact with the surrounding vacuolated cytoplasm; the thickness of the M bands is greatest at the base of a contracted animal. The contractile and extensile properties of these organelles have been discussed in the light of experimental results and theoretical considerations.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FAURE-FREMEIT E., GAUCHERY M., ROUILLER C. Les structures myoïdes chez les Ciliés; étude au microscope électronique. Arch Anat Microsc Morphol Exp. 1956 Apr-Jun;45(2):139–161. [PubMed] [Google Scholar]
  2. GOLDACRE R. J., LORCH I. J. Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movement and osmotic work. Nature. 1950 Sep 23;166(4221):497–500. doi: 10.1038/166497a0. [DOI] [PubMed] [Google Scholar]
  3. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  4. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  5. JACKSON S. F., RANDALL J. T. Cytoplasmic fine-structure. Proc R Soc Lond B Biol Sci. 1958 Mar 18;148(932):290–308. doi: 10.1098/rspb.1958.0021. [DOI] [PubMed] [Google Scholar]
  6. JAKUS M. A. Studies on the cornea. II. The fine structure of Descement's membrane. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):243–252. doi: 10.1083/jcb.2.4.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LEVER J. D. Physiologically induced changes in adrenocortical mitochondria. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):313–318. doi: 10.1083/jcb.2.4.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOEWY A. An actomyosin-like substance from the plasmodium of a myxomycete. J Cell Physiol. 1952 Aug;40(1):127–156. doi: 10.1002/jcp.1030400109. [DOI] [PubMed] [Google Scholar]
  9. MOSES M. J. Chromosomal structures in crayfish spermatocytes. J Biophys Biochem Cytol. 1956 Mar 25;2(2):215–218. doi: 10.1083/jcb.2.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PAPPAS G. D. Helical structures in the nucleus of Amoeba proteus. J Biophys Biochem Cytol. 1956 Mar 25;2(2):221–222. doi: 10.1083/jcb.2.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PAPPAS G. D. The fine structure of the nuclear envelope of Amoeba proteus. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):431–434. doi: 10.1083/jcb.2.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PAULING L., COREY R. B., BRANSON H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A. 1951 Apr;37(4):205–211. doi: 10.1073/pnas.37.4.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PORTER K. R. The submicroscopic morphology of protoplasm. Harvey Lect. 1955;51:175–228. [PubMed] [Google Scholar]
  14. ROTH L. E. Aspects of ciliary fine structure in Euplotes patella. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):235–240. doi: 10.1083/jcb.2.4.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROUILLER C., FAURE-FREMIET E. Ultrastructure réticulée d'une fibre squelettique chez un cilié. J Ultrastruct Res. 1957 Nov;1(1):1–13. doi: 10.1016/s0022-5320(57)80008-2. [DOI] [PubMed] [Google Scholar]
  16. RUDZINSKA M. A., SEDAR A. W. Mitochondria of protozoa. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):331–336. doi: 10.1083/jcb.2.4.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SEDAR A. W., PORTER K. R. The fine structure of cortical components of Paramecium multimicronucleatum. J Biophys Biochem Cytol. 1955 Nov 25;1(6):583–604. doi: 10.1083/jcb.1.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. TARTAR V. Reactions of Stentor coeruleus to certain substances added to the medium. Exp Cell Res. 1957 Oct;13(2):317–332. doi: 10.1016/0014-4827(57)90011-3. [DOI] [PubMed] [Google Scholar]
  19. WEISZ P. B. An experimental analysis of morphogenesis in Stentor coeruleus. J Exp Zool. 1951 Mar;116(2):231–257. doi: 10.1002/jez.1401160203. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES