Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1958 Sep 25;4(5):621–632. doi: 10.1083/jcb.4.5.621

Spermatogenesis in Animals as Revealed by Electron Microscopy

VI. Researches on the Spermatozoon-Dimorphism in a Pond Snail, Cipangopaludina malleata

G Yasuzumi 1, Hiroaki Tanaka 1
PMCID: PMC2224554  PMID: 13587559

Abstract

This paper reports an electron microscope study of typical and atypical spermatogenesis in the pond snail, Cipangopaludina malteata. In the typical spermatid the nucleus undergoes profound changes as development proceeds, affecting both its form and internal fine structure. A large number of roughly parallel, dense filaments, arranged along the long axis of the nucleus, fuse with each other to form in the end the homogeneous helical body characteristic of the head of the adult spermatozoa. The nebenkern is apparently mitochondrial in nature and, in its early development, is similar to that of insects except that it appears as a double structure from the beginning. As differentiation proceeds, the mitochondria lose their membranes, and the residual, now denuded cristae, reorganize to give a parallel radial arrangement. In the last stages of development, the nebenkern derivations become applied to the sheath of the middle piece in a compact helical fashion. In the development of the atypical spermatozoa, the nucleus fails to differentiate and simply shrinks in volume until only a remnant, devoid of DNA, is left. The cytoplasm shows numerous vesicles containing small Feulgen-positive bodies, 80 to 130 mµ in diameter. These vesicles plus contents increase in number as spermatogenesis proceeds. The "head" structure of the atypical spermatozoa consists of a bundle (7 to 17) of tail flagella, each with a centriole at its anterior end. The end-piece of the atypical form appears brush-like and is made up of the free ends of the several flagella.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The fine structure of the sea urchin spermatozoa as revealed by the electron microscope. Z Zellforsch Mikrosk Anat. 1955;42(1-2):134–148. doi: 10.1007/BF00335087. [DOI] [PubMed] [Google Scholar]
  2. ANDERSON E., BEAMS H. W., DEVINE R. L., TAHMISIAN T. N. Electron microscope studies on the dictyosomes and acroblasts in the male germ cells of the cricket. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):123–128. doi: 10.1083/jcb.2.4.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BERNHARD W., ROUILLER C. Microbodies and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):355–360. doi: 10.1083/jcb.2.4.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BURGOS M. H., FAWCETT D. W. An electron microscope study of spermatid differentiation in the toad, Bufo arenarum Hensel. J Biophys Biochem Cytol. 1956 May 25;2(3):223–240. doi: 10.1083/jcb.2.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BURGOS M. H., FAWCETT D. W. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955 Jul 25;1(4):287–300. doi: 10.1083/jcb.1.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CHALLICE C. E. Electron microscope studies of spermiogenesis in some rodents. J R Microsc Soc. 1953 Sep;73(3):115–127. doi: 10.1111/j.1365-2818.1953.tb01978.x. [DOI] [PubMed] [Google Scholar]
  7. DEVINE R. L., POWERS E. L., TAHMISIAN T. N. Light and electron microscope studies of morphological changes of mitochondria during spermatogenesis in the grasshopper. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):325–330. doi: 10.1083/jcb.2.4.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. EHRET C. F., MINICK O. T., POWERS E. L., ROTH L. E. The internal organization of mitochondria. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):341–346. doi: 10.1083/jcb.2.4.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FREEMAN J. A. The ultrastructure of the double membrane systems of micochondria. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):353–354. doi: 10.1083/jcb.2.4.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FUJIMURA W., ISHIDA H., MASUDA T., TANAKA A., YASUZUMI G. Submicroscopic structure of the sperm-head as revealed by electron microscopy. Okajimas Folia Anat Jpn. 1956 Jul;29(1-2):133–138. doi: 10.2535/ofaj1936.29.1-2_133. [DOI] [PubMed] [Google Scholar]
  11. GATENBY J. B., DALTON A. J., FELIX M. D. The contractile vacuole of parazoa and protozoa, and the golgi apparatus. Nature. 1955 Aug 13;176(4476):301–302. doi: 10.1038/176301a0. [DOI] [PubMed] [Google Scholar]
  12. GIBBONS I. R., BRADFIELD J. R. The fine structure of nuclei during sperm maturation in the locust. J Biophys Biochem Cytol. 1957 Mar 25;3(2):133–140. doi: 10.1083/jcb.3.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GRASSE P. P., CARASSO N., FAVARD P. L'ultrastructure des chromosomes et son évolution au cours de la spermiogenèse de l'Escargot Helix pomatia. I. La spermatide; nouvelle conception de la structure des chromosomes. C R Hebd Seances Acad Sci. 1956 Feb 20;242(8):971–975. [PubMed] [Google Scholar]
  14. LOW F. N. Mitochondrial structure. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):337–340. doi: 10.1083/jcb.2.4.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PALADE G. E. A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1955 Jan;1(1):59–68. doi: 10.1083/jcb.1.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PALADE G. E. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953 Jul;1(4):188–211. doi: 10.1177/1.4.188. [DOI] [PubMed] [Google Scholar]
  17. PALADE G. E. The fine structure of mitochondria. Anat Rec. 1952 Nov;114(3):427–451. doi: 10.1002/ar.1091140304. [DOI] [PubMed] [Google Scholar]
  18. REBHUN L. I. Nuclear changes during spermiogenesis in a pulmonate snail. J Biophys Biochem Cytol. 1957 Jul 25;3(4):509–524. doi: 10.1083/jcb.3.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. RUDZINSKA M. A., SEDAR A. W. Mitochondria of protozoa. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):331–336. doi: 10.1083/jcb.2.4.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SAWADA T. An electron microscope study of spermatid differentiation in the mouse. Okajimas Folia Anat Jpn. 1957 Jun;30(1):73–80. doi: 10.2535/ofaj1936.30.1_73. [DOI] [PubMed] [Google Scholar]
  21. SEDAR A. W., PORTER K. R. The fine structure of cortical components of Paramecium multimicronucleatum. J Biophys Biochem Cytol. 1955 Nov 25;1(6):583–604. doi: 10.1083/jcb.1.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. YASUZUMI G. Electron microscopy of the developing sperm-head in the sparrow testis. Exp Cell Res. 1956 Aug;11(1):240–243. doi: 10.1016/0014-4827(56)90216-6. [DOI] [PubMed] [Google Scholar]
  23. YASUZUMI G., FUJIMURA W., ISHIDA H. Spermatogenesis in animal as revealed by electron microscopy. V. Spermatid differentiation of Drosophila and grasshopper. Exp Cell Res. 1958 Apr;14(2):268–285. doi: 10.1016/0014-4827(58)90185-x. [DOI] [PubMed] [Google Scholar]
  24. YASUZUMI G., ISHIDA H. Spermatogenesis in animals as revealed by electron microscopy. II. Submicroscopic structure of developing spermatid nuclei of grasshopper. J Biophys Biochem Cytol. 1957 Sep 25;3(5):663–668. doi: 10.1083/jcb.3.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. YASUZUMI G. Spermatogenesis in animals revealed by electron microscopy. I. Formation and submicroscopic structure of the middle-piece of the albino rat. J Biophys Biochem Cytol. 1956 Jul 25;2(4):445–450. doi: 10.1083/jcb.2.4.445. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES