Abstract
Proteins and colloidal materials, administered orally to suckling rats and mice, were ingested by columnar absorptive cells of the jejunum and ileum, but not of the duodenum. Bovine gamma globulin and ovalbumin were identified in the apical cytoplasm by staining with fluorescent antibody; trypan blue, Evans blue, saccharated iron oxide, and colloidal gold were detected intracellularly by their color, specific staining, and appearance in the electron microscope. Each substance was segregated in membrane-enclosed vacuoles, apparently part of a system of potentially interconnecting vacuoles and tubules in the apical cytoplasm which is continuous in places with the apical cell membrane. We postulate that ingestion of foreign materials was accomplished by pinocytosis, that is, by invagination of the apical cell membrane to form vacuoles containing material from the intestinal lumen. Approximately 18 days after birth columnar absorptive cells lost the ability to ingest proteins and colloids, and no longer contained large vacuoles and numerous tubules. At this age rats and mice lose the ability to absorb antibodies from the intestine in an immunologically intact form, and we conclude that cellular ingestion is part of the mechanism of absorption of intact proteins in suckling animals. Particulate fat apparently is absorbed in both newborn and adult animals by micropinocytosis. Thus adult animals may not have lost the capacity for pinocytosis, but rather have become selective as to what substances provoke it. Cortisone acetate, administered subcutaneously to rats 8 to 10 days old alters the columnar absorptive cells within 72 hours so that they resemble the cells in adult animals and no longer ingest proteins.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHAPMAN-ANDRESEN C. Some observations on pinocytosis in leucocytes. Exp Cell Res. 1957 Apr;12(2):397–399. doi: 10.1016/0014-4827(57)90153-2. [DOI] [PubMed] [Google Scholar]
- CLARK S. L., Jr Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol. 1957 May 25;3(3):349–362. doi: 10.1083/jcb.3.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COONS A. H., KAPLAN M. H. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med. 1950 Jan 1;91(1):1–13. doi: 10.1084/jem.91.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COONS A. H., LEDUC E. H., CONNOLLY J. M. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med. 1955 Jul 1;102(1):49–60. doi: 10.1084/jem.102.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DALTON A. J. Electron micrography of epithelial cells of the gastro-intestinal tract and pancreas. Am J Anat. 1951 Jul;89(1):109–133. doi: 10.1002/aja.1000890105. [DOI] [PubMed] [Google Scholar]
- DEMPSEY E. W. Electron microscopy of the visceral yolk-sac epithelium of the guinea pig. Am J Anat. 1953 Nov;93(3):331–363. doi: 10.1002/aja.1000930303. [DOI] [PubMed] [Google Scholar]
- DEUTSCH H. F., SMITH V. R. Intestinal permeability to proteins in the newborn herbivore. Am J Physiol. 1957 Nov;191(2):271–276. doi: 10.1152/ajplegacy.1957.191.2.271. [DOI] [PubMed] [Google Scholar]
- HALLIDAY R. The termination of the capacity of young rats to absorb antibody from the milk. Proc R Soc Lond B Biol Sci. 1956 May 29;145(919):179–185. doi: 10.1098/rspb.1956.0025. [DOI] [PubMed] [Google Scholar]
- HARDY W. S., HILL K. J. Histological and histochemical observations on the intestinal cells of lambs and kids absorbing colostrum. Nature. 1956 Dec 15;178(4546):1353–1354. doi: 10.1038/1781353b0. [DOI] [PubMed] [Google Scholar]
- Hughes W. L., Bond V. P., Brecher G., Cronkite E. P., Painter R. B., Quastler H., Sherman F. G. CELLULAR PROLIFERATION IN THE MOUSE AS REVEALED BY AUTORADIOGRAPHY WITH TRITIATED THYMIDINE. Proc Natl Acad Sci U S A. 1958 May;44(5):476–483. doi: 10.1073/pnas.44.5.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEBLOND C. P., EVERETT N. B., SIMMONS B. Sites of protein synthesis as shown by radioautography after administration of S35-labelled methionine. Am J Anat. 1957 Sep;101(2):225–271. doi: 10.1002/aja.1001010203. [DOI] [PubMed] [Google Scholar]
- MOLONEY P. J., COVAL M. Antigenicity of insulin: diabetes induced by specific antibodies. Biochem J. 1955 Feb;59(2):179–185. doi: 10.1042/bj0590179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOOG F., THOMAS E. R. The influence of various adrenal and gonadal steroids on the accumulation of alkaline phosphatase in the duodenum of the suckling mouse. Endocrinology. 1955 Feb;56(2):187–196. doi: 10.1210/endo-56-2-187. [DOI] [PubMed] [Google Scholar]
- PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER K. R., BLUM J. A study in microtomy for electron microscopy. Anat Rec. 1953 Dec;117(4):685–710. doi: 10.1002/ar.1091170403. [DOI] [PubMed] [Google Scholar]
- WEISS J. M. The role of the Golgi complex in fat absorption as studied with the electron microscope with observations on the cytology of duodenal absorptive cells. J Exp Med. 1955 Dec 1;102(6):775–782. doi: 10.1084/jem.102.6.775. [DOI] [PMC free article] [PubMed] [Google Scholar]