Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1959 Jan 25;5(1):117–121. doi: 10.1083/jcb.5.1.117

The Origin and Fate of Annulate Lamellae in Maturing Sand Dollar Eggs

R W Merriam 1
PMCID: PMC2224629  PMID: 13630942

Abstract

Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. Electron microscopy on the basophilic structures of the sea urchin egg. Z Zellforsch Mikrosk Anat. 1957;45(6):660–675. doi: 10.1007/BF00338710. [DOI] [PubMed] [Google Scholar]
  2. AFZELIUS B. A. The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope. Exp Cell Res. 1955 Feb;8(1):147–158. doi: 10.1016/0014-4827(55)90051-3. [DOI] [PubMed] [Google Scholar]
  3. ANDERSON E., VAN BREEMEN V. L. Electron microscopic observations on spinal ganglion cells of Rana pipiens after injection of malononitrile. J Biophys Biochem Cytol. 1958 Jan 25;4(1):83–86. doi: 10.1083/jcb.4.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COHEN A. I. Electron microscopic observations of amoeba proteus in growth and inanition. J Biophys Biochem Cytol. 1957 Nov 25;3(6):859–866. doi: 10.1083/jcb.3.6.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DALTON A. J., FELIX M. D. Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis in situ, in homogenates and after isolation. Am J Anat. 1954 Mar;94(2):171–207. doi: 10.1002/aja.1000940202. [DOI] [PubMed] [Google Scholar]
  6. DE ROBERTIS E. Morphogenesis of the retinal rods; an electron microscope study. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):209–218. doi: 10.1083/jcb.2.4.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DE ROBERTIS E. The nucleo-cytoplasmic relationship and the basophilic substance (ergastoplasm) of nerve cells; electron microscope observations. J Histochem Cytochem. 1954 Sep;2(5):341–345. doi: 10.1177/2.5.341. [DOI] [PubMed] [Google Scholar]
  8. GALL J. G. Observations on the nuclear membrane with the electron microscope. Exp Cell Res. 1954 Aug;7(1):197–200. doi: 10.1016/0014-4827(54)90054-3. [DOI] [PubMed] [Google Scholar]
  9. GALL J. G. Small granules in the amphibian oocyte nucleus and their relationship to RNA. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):393–396. doi: 10.1083/jcb.2.4.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GAY H. Chromosome-nuclear membrane-cytoplasmic interrelations in Drosophila. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):407–414. [PMC free article] [PubMed] [Google Scholar]
  11. HODGE A. J., MCLEAN J. D., MERCER F. V. A possible mechanism for the morphogenesis of lamellar systems in plant cells. J Biophys Biochem Cytol. 1956 Sep 25;2(5):597–608. doi: 10.1083/jcb.2.5.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LAFONTAINE J. G. A particulate component found in nucleoli of Allium cepa and Vicia faba. J Biophys Biochem Cytol. 1958 Mar 25;4(2):229–230. doi: 10.1083/jcb.4.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LITTLEFIELD J. W., KELLER E. B., GROSS J., ZAMECNIK P. C. Studies on cytoplasmic ribonucleoprotein particles from the liver of the rat. J Biol Chem. 1955 Nov;217(1):111–123. [PubMed] [Google Scholar]
  14. PORTER K. R. Electron microscopy of basophilic components of cytoplasm. J Histochem Cytochem. 1954 Sep;2(5):346–375. doi: 10.1177/2.5.346. [DOI] [PubMed] [Google Scholar]
  15. PORTER K. R. The fine structure of cells. Fed Proc. 1955 Sep;14(3):673–682. [PubMed] [Google Scholar]
  16. REBHUN L. I. Electron microscopy of basophilic structures of some invertebrate oocytes. I. Periodic lamellane and the nuclear envelope. J Biophys Biochem Cytol. 1956 Jan 25;2(1):93–104. doi: 10.1083/jcb.2.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SWIFT H. The fine structure of annulate lamellae. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):415–418. doi: 10.1083/jcb.2.4.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WISCHNITZER S. An electron microscope study of the nuclear envelope of amphibian oocytes. J Ultrastruct Res. 1958 Apr;1(3):201–222. doi: 10.1016/s0022-5320(58)80001-5. [DOI] [PubMed] [Google Scholar]
  19. YASUZUMI G., TANAKA H. Electron microscope studies on the fine structure of the ovary. I. Studies on the origin of yolk. Exp Cell Res. 1957 Jun;12(3):681–685. doi: 10.1016/0014-4827(57)90190-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES