Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1959 Jan 25;5(1):97–108. doi: 10.1083/jcb.5.1.97

The Swelling of Rat Liver Mitochondria by Thyroxine and its Reversal

Albert L Lehninger 1, Betty Lou Ray 1, Marion Schneider 1
PMCID: PMC2224634  PMID: 13630940

Abstract

The in vitro swelling action of L-thyroxine on rat liver mitochondria as examined photometrically represents an acceleration of a process which the mitochondria are already inherently capable of undergoing spontaneously, as indicated by the identical kinetic characteristics and the extent of thyroxine-induced and spontaneous swelling, the nearly identical pH dependence, and the fact that sucrose has a specific inhibitory action on both types of swelling. However, thyroxine does not appear to be a "catalyst" or coenzyme since it does not decrease the temperature coefficient of spontaneous swelling. The temperature coefficient is very high, approximately 6.0 near 20°. Aging of mitochondria at 0° causes loss of thyroxine sensitivity which correlates closely with the loss of bound DPN from the mitochondria, but not with loss of activity of the respiratory chain or with the efficiency of oxidative phosphorylation. Tests with various respiratory chain inhibitors showed that the oxidation state of bound DPN may be a major determinant of thyroxine sensitivity; the oxidation state of the other respiratory carriers does not appear to influence sensitivity to thyroxine. These facts and other considerations suggest that a bound form of mitochondrial DPN is the "target" of the action of thyroxine. The thyroxine-induced swelling is not reversed by increasing the osmolar concentration of external sucrose, but can be "passively" or osmotically reversed by adding the high-particle weight solute polyvinylpyrrolidone. The mitochondrial membrane becomes more permeable to sucrose during the swelling reaction. On the other hand, thyroxine-induced swelling can be "actively" reversed by ATP in a medium of 0.15 M KCl or NaCl but not in a 0.30 M sucrose medium. The action of ATP is specific; ADP, Mn++, and ethylenediaminetetraacetate are not active. It is concluded that sucrose is an inhibitor of the enzymatic relationship between oxidative phosphorylation and the contractility and permeability properties of the mitochondrial membrane. Occurrence of different types of mitochondrial swelling, the intracellular factors affecting the swelling and shrinking of mitochondria, as well as the physiological significance of thyroxine-induced swelling are discussed.

Full Text

The Full Text of this article is available as a PDF (1,023.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AEBI H., ABELIN I. Elektrolyt- und Fermenthaushalt der Hyperthyreotischen Leber. Biochem Z. 1953;324(5):364–384. [PubMed] [Google Scholar]
  2. AMOORE J. E., BARTLEY W. The permeability of isolated rat-liver mitochondria to sucrose, sodium chloride and potassium chloride at 0 degrees. Biochem J. 1958 Jun;69(2):223–236. doi: 10.1042/bj0690223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BALL E. G., BARRNETT R. J. An integrated morphological and biochemical study of a purified preparation of the succinate and DPNH oxidase system. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1023–1036. doi: 10.1083/jcb.3.6.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BIRBECK M. S., REID E. Development of an improved medium for the isolation of liver mitochondria. J Biophys Biochem Cytol. 1956 Sep 25;2(5):609–624. doi: 10.1083/jcb.2.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BRENNER-HOLZACH O., RAAFLAUB J. Die Korrelation zwischen der Schwellung isolierter Mitochondrien und dem Abbau der intramitochondrialen Adenosinnucleotide (ATP, ADP, AMP, CoA). Helv Physiol Pharmacol Acta. 1954;12(3):242–252. [PubMed] [Google Scholar]
  6. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  7. CHAPPELL J. B., GREVILLE G. D. Dependence of mitochondrial swelling on oxidizable substrates. Nature. 1958 Sep 20;182(4638):813–814. doi: 10.1038/182813a0. [DOI] [PubMed] [Google Scholar]
  8. COOPER C., LEHNINGER A. L. Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. I. The span beta-hydroxybutyrate to oxygen. J Biol Chem. 1956 Mar;219(1):489–506. [PubMed] [Google Scholar]
  9. COOPER C., LEHNINGER A. L. Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. IV. Adenosinetriphosphatase activity. J Biol Chem. 1957 Jan;224(1):547–560. [PubMed] [Google Scholar]
  10. COOPER C., TAPLEY D. F. Effect of thyroxine on the swelling of mitochondria isolated from various tissues of the rat. Nature. 1956 Nov 17;178(4542):1119–1119. doi: 10.1038/1781119a0. [DOI] [PubMed] [Google Scholar]
  11. COOPER C., TAPLEY D. F. The effect of thyroxine and related compounds on oxidative phosphorylation. J Biol Chem. 1956 Sep;222(1):341–349. [PubMed] [Google Scholar]
  12. COTTONE M. A., WITTER R. F. A study of some factors involved in the swelling of isolated mitochondria. Biochim Biophys Acta. 1956 Nov;22(2):364–371. doi: 10.1016/0006-3002(56)90164-0. [DOI] [PubMed] [Google Scholar]
  13. CRANE R. K., FIELD R. A., CORI C. F. Studies of tissue permeability. I. The penetration of sugars into the Ehrlich ascites tumor cells. J Biol Chem. 1957 Feb;224(2):649–662. [PubMed] [Google Scholar]
  14. DAVIES R. E., FONNESU A., PRICE C. A. Movements of water and ions in mitochondria. Biochem J. 1956 Dec;64(4):754–768. doi: 10.1042/bj0640754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DAVIES R. E., FONNESU A. The prevention of swelling of liver mitochondria in vitro. Biochem J. 1956 Dec;64(4):769–777. doi: 10.1042/bj0640769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. DICKENS F., SALMONY D. Effects of thyroid hormones in vitro on tissue respiration, oxidative phosphorylation and the swelling of mitochondria. Biochem J. 1956 Dec;64(4):645–651. doi: 10.1042/bj0640645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DOUNCE A. L., WITTER R. F., MONTY K. J., PATE S., COTTONE M. A. A method for isolating intact mitochondria and nuclei from the same homogenate, and the influence of mitochondrial destruction on the properties of cell nuclei. J Biophys Biochem Cytol. 1955 Mar;1(2):139–153. doi: 10.1083/jcb.1.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. EMMELOT P., BOS C. J. Thyroxine-mediated release of diphosphopyridine nucleotide from mitochondrial dehydrogenases. Exp Cell Res. 1958 Feb;14(1):132–141. doi: 10.1016/0014-4827(58)90219-2. [DOI] [PubMed] [Google Scholar]
  19. ERNSTER L., LINDBERG O. Animal mitochondria. Annu Rev Physiol. 1958;20:13–42. doi: 10.1146/annurev.ph.20.030158.000305. [DOI] [PubMed] [Google Scholar]
  20. ESTABROOK R. W. Kinetic properties of a reduced diphosphopyridine nucleotide cytochrome c reductase from heart muscle. J Biol Chem. 1957 Aug;227(2):1093–1108. [PubMed] [Google Scholar]
  21. GAMBLE J. L., Jr, LEHNINGER A. L. Activity of respiratory enzymes and adenosine-triphosphatase in fragments of mitochondria. J Biol Chem. 1956 Dec;223(2):921–933. [PubMed] [Google Scholar]
  22. GAMBLE J. L., Jr Potassium binding and oxidative phosphorylation in mitochondria and mitochondrial fragments. J Biol Chem. 1957 Oct;228(2):955–971. [PubMed] [Google Scholar]
  23. HUNTER F. E., Jr, DAVIS J., CARLAT L. The stability of oxidative and phosphorylative systems in mitochondria under anaerobic conditions. Biochim Biophys Acta. 1956 Apr;20(1):237–242. doi: 10.1016/0006-3002(56)90282-7. [DOI] [PubMed] [Google Scholar]
  24. HUNTER F. E., Jr, FORD L. Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other ions. J Biol Chem. 1955 Sep;216(1):357–369. [PubMed] [Google Scholar]
  25. Hoch F. L., Lipmann F. THE UNCOUPLING OF RESPIRATION AND PHOSPHORYLATION BY THYROID HORMONES. Proc Natl Acad Sci U S A. 1954 Oct;40(10):909–921. doi: 10.1073/pnas.40.10.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. JACKSON K. L., PACE N. Some permeability properties of isolated rat liver cell mitochondria. J Gen Physiol. 1956 Sep 20;40(1):47–71. doi: 10.1085/jgp.40.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. JOHNSON D., LARDY H. Substrate-selective inhibition of mitochondrial oxidations by enhanced tonicity. Nature. 1958 Mar 8;181(4610):701–702. doi: 10.1038/181701a0. [DOI] [PubMed] [Google Scholar]
  28. KLEMPERER H. G. The uncoupling of oxidative phosphorylation in rat-liver mitochondria by thyroxine, triiodothyronine and related substances. Biochem J. 1955 May;60(1):122–128. doi: 10.1042/bj0600122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. LEHNINGER A. L., RAY B. L. Oxidation-reduction state of rat liver mitochondria and the action of thyroxine. Biochim Biophys Acta. 1957 Dec;26(3):643–644. doi: 10.1016/0006-3002(57)90115-4. [DOI] [PubMed] [Google Scholar]
  30. LEHNINGER A. L., SCHNEIDER M. Mitochondrial swelling induced by glutathione. J Biophys Biochem Cytol. 1959 Jan 25;5(1):109–116. doi: 10.1083/jcb.5.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. LEHNINGER A. L., WADKINS C. L., COOPER C., DEVLIN T. M., GAMBLE J. L., Jr Oxidative phosphorylation. Science. 1958 Aug 29;128(3322):450–456. doi: 10.1126/science.128.3322.450. [DOI] [PubMed] [Google Scholar]
  32. MALEY G. F., LARDY H. A. Efficiency of phosphorylation in selected oxidations by mitochondria from normal and thyrotoxic rat livers. J Biol Chem. 1955 Jul;215(1):377–388. [PubMed] [Google Scholar]
  33. MARTIUS C., HESS B. Uber den Wirkungsmechanismus des Schilddrüsenhormons. Biochem Z. 1955;326(3):191–203. [PubMed] [Google Scholar]
  34. McMURRAY W. C., MALEY G. F., LARDY H. A. Oxidative phosphorylation by sonic extracts of mitochondria. J Biol Chem. 1958 Jan;230(1):219–229. [PubMed] [Google Scholar]
  35. NOVIKOFF A. B. Preservation of the fine structure of isolated liver cell particulates with polyvinylpyrrollidone-sucrose. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):65–66. doi: 10.1083/jcb.2.4.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. PURVIS J. L. Forms of pyridine nucleotides in rat-liver mitochondria. Nature. 1958 Sep 13;182(4637):711–712. doi: 10.1038/182711a0. [DOI] [PubMed] [Google Scholar]
  37. RAAFLAUB J. Die Schwellung isolierter Leberzellmitochondrien und ihre physikalisch-chemische Beeinflussbarkeit. Helv Physiol Pharmacol Acta. 1953;11(2):142–156. [PubMed] [Google Scholar]
  38. SIEKEVITZ P., WATSON M. L. The isolation and analysis of a mitochondrial membrane fraction. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):379–382. doi: 10.1083/jcb.2.4.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. STANBURY S. W., MUDGE G. H. Potassium metabolism of liver mitochondria. Proc Soc Exp Biol Med. 1953 Apr;82(4):675–681. doi: 10.3181/00379727-82-20216. [DOI] [PubMed] [Google Scholar]
  40. TAPLEY D. F., COOPER C., LEHNINGER A. L. The action of thyroxine on mitochondria and oxidative phosphorylation. Biochim Biophys Acta. 1955 Dec;18(4):597–598. doi: 10.1016/0006-3002(55)90171-2. [DOI] [PubMed] [Google Scholar]
  41. TAPLEY D. F. The effect of thyroxine and other substances on the swelling of isolated rat liver mitochondria. J Biol Chem. 1956 Sep;222(1):325–339. [PubMed] [Google Scholar]
  42. TEDESCHI H., HARRIS D. L. Some observations on the photometric estimation of mitochondrial volume. Biochim Biophys Acta. 1958 May;28(2):392–402. doi: 10.1016/0006-3002(58)90487-6. [DOI] [PubMed] [Google Scholar]
  43. VITALE J. J., HEGSTED D. M., NAKAMURA M., CONNORS P. The effect of thyroxine on magnesium requirement. J Biol Chem. 1957 Jun;226(2):597–601. [PubMed] [Google Scholar]
  44. VITALE J. J., NAKAMURA M., HEGSTED D. M. The effect of magnesium deficiency on oxidative phosphorylation. J Biol Chem. 1957 Oct;228(2):573–576. [PubMed] [Google Scholar]
  45. WERKHEISER W. C., BARTLEY W. The study of steady-state concentrations of internal solutes of mitochondria by rapid centrifugal transfer to a fixation medium. Biochem J. 1957 May;66(1):79–91. doi: 10.1042/bj0660079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. WISWELL J. G., BRAVERMAN M. G. The effects of thyroxine and certain metal ions upon oxidation and phosphorylation in vitro. Endocrinology. 1957 Aug;61(2):153–159. doi: 10.1210/endo-61-1-153. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES