Abstract
Sections of cat ciliary ganglia were stained for acetylcholinesterase activity by several modifications of the acetylthiocholine method in order to achieve optimal accuracy of cytological localization of the enzyme. These were compared by ordinary light and phase contrast microscopy with similar sections stained by standard techniques for Nissl substance, the Golgi apparatus, and the neurofibrillae, and by intravital methylene blue. The pattern of cytoplasmic distribution of acetylcholinesterase corresponded most closely with that of the Nissl substance. Following total inactivation of the ganglionic acetylcholinesterase by intravenously administered di-isopropyl fluorophosphate, the reappearance of the enzyme in vivo occurred at the same cytoplasmic sites prior to its reappearance at the cell membrane or preganglionic axonal terminations. These observations, and reports cited from the literature, provide support for the hypothesis that acetylcholinesterase is synthesized within the endoplasmic reticulum, then transported via its canaliculi to the surface of the cell and its processes, where its functional sites are oriented externally to the lipoidal membrane.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERGNER A. D. Histochemical demonstration of the effect of nerve section on cholinesterase activity at motor end plates in the gastrocnemius muscle of the guinea-pig. Br J Exp Pathol. 1957 Apr;38(2):160–163. [PMC free article] [PubMed] [Google Scholar]
- CHU C. H., SWINYARD C. A. Morphological and cytochemical identification of the Golgi apparatus. J Biophys Biochem Cytol. 1956 May 25;2(3):263–280. doi: 10.1083/jcb.2.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COUPLAND R. E., HOLMES R. L. The distribution of cholinesterase in the adrenal glands of the rat, cat and rabbit. J Physiol. 1958 Apr 3;141(1):97–106. doi: 10.1113/jphysiol.1958.sp005958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DALTON A. J., FELIX M. D. Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis in situ, in homogenates and after isolation. Am J Anat. 1954 Mar;94(2):171–207. doi: 10.1002/aja.1000940202. [DOI] [PubMed] [Google Scholar]
- DEITCH A. D., MOSES M. J. The Nissl substance of living and fixed spinal ganglion cells. II. An ultraviolet absorption study. J Biophys Biochem Cytol. 1957 May 25;3(3):449–456. doi: 10.1083/jcb.3.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEITCH A. D., MURRAY M. R. The Nissl substance of living and fixed spinal ganglion cells. I. A phase contrast study. J Biophys Biochem Cytol. 1956 Jul 25;2(4):433–444. doi: 10.1083/jcb.2.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELFTMAN H. A direct silver method for the Golgi apparatus. Stain Technol. 1952 Jan;27(1):47–52. doi: 10.3109/10520295209105059. [DOI] [PubMed] [Google Scholar]
- GEREBTZOFF M. A. Recherches histochimiques sur les acétylcholine et choline estérases. Acta Anat (Basel) 1953;19(4):366–379. [PubMed] [Google Scholar]
- GIACOBINI E. Histochemical demonstration of AChE activity in isolated nerve cells. Acta Physiol Scand. 1956 May 18;36(3):276–290. doi: 10.1111/j.1748-1716.1956.tb01325.x. [DOI] [PubMed] [Google Scholar]
- GOUTIER R., GOUTIER-PIROTTE M. Localisation intracellulaire des cholinestérases. I. Foie de quelques mammifères. Biochim Biophys Acta. 1955 Mar;16(3):361–369. doi: 10.1016/0006-3002(55)90239-0. [DOI] [PubMed] [Google Scholar]
- HEBB C. O., WAITES G. M. Choline acetylase in antero- and retro-grade degeneration of a cholinergic nerve. J Physiol. 1956 Jun 28;132(3):667–671. doi: 10.1113/jphysiol.1956.sp005556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOBBIGER F. Inhibition of cholinesterases by irreversible inhibitors in vitro and in vivo. Br J Pharmacol Chemother. 1951 Mar;6(1):21–30. doi: 10.1111/j.1476-5381.1951.tb00616.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLT S. J., O'SULLIVAN D. G. Studies in enzyme cytochemistry I. Principles of cytochemical staining methods. Proc R Soc Lond B Biol Sci. 1958 Apr 8;148(933):465–480. doi: 10.1098/rspb.1958.0039. [DOI] [PubMed] [Google Scholar]
- KOELLE G. B. Histochemical demonstration of reversible anticholinesterase action at selective cellular sites in vivo. J Pharmacol Exp Ther. 1957 Aug;120(4):488–503. [PubMed] [Google Scholar]
- KOELLE G. B., STEINER E. C. The cerebral distributions of a tertiary and a quaternary anticholinesterase agent following intravenous and intraventricular injection. J Pharmacol Exp Ther. 1956 Dec;118(4):420–434. [PubMed] [Google Scholar]
- KOELLE G. B. The elimination of enzymatic diffusion artifacts in the histochemical localization of cholinesterases and a survey of their cellular distributions. J Pharmacol Exp Ther. 1951 Oct;103(2):153–171. [PubMed] [Google Scholar]
- KOELLE G. B. The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J Pharmacol Exp Ther. 1955 Jun;114(2):167–184. [PubMed] [Google Scholar]
- MALMGREN H., SYLVEN B. On the chemistry of the thiocholine method of Koelle. J Histochem Cytochem. 1955 Nov;3(6):441–445. doi: 10.1177/3.6.441. [DOI] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. The endoplasmic reticulum. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):85–98. doi: 10.1083/jcb.2.4.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALAY S. L., WISSIG S. L. Secretory granules and Nissl substance in fresh supraoptic neurones of the rabbit. Anat Rec. 1953 Jul;116(3):301–313. doi: 10.1002/ar.1091160307. [DOI] [PubMed] [Google Scholar]
- PORTER K. R. Observations on a submicroscopic basophilic component of cytoplasm. J Exp Med. 1953 May;97(5):727–750. doi: 10.1084/jem.97.5.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAJAPURKAR M. V., KOELLE G. B. Reactivation of DFP-inactivated acetylcholinesterase by monoisonitrosoacetone (MINA) and diacetylmonoxime (DAM) in vivo. J Pharmacol Exp Ther. 1958 Aug;123(4):247–253. [PubMed] [Google Scholar]
- RUSKA H., EDWARDS G. A., CAESAR R. A concept of intracellular transmission of excitation by means of the endoplasmic reticulum. Experientia. 1958 Mar 15;14(3):117–120. doi: 10.1007/BF02159249. [DOI] [PubMed] [Google Scholar]
- SCHMITT F. O., GEREN B. B. The fibrous structure of the nerve axon in relation to the localization of "neurotubules". J Exp Med. 1950 May 1;91(5):499–504. doi: 10.1084/jem.91.5.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SNELL R. S., GARRETT J. R. The distribution of cholinesterase in the submaxillary and sublingual salivary glands of the rat. J Histochem Cytochem. 1957 May;5(3):236–245. doi: 10.1177/5.3.236. [DOI] [PubMed] [Google Scholar]
- TAXI J. Action du formol sur l'activité de diverses préparations de cholinestérases. J Physiol (Paris) 1952;44(3):595–597. [PubMed] [Google Scholar]
- ZACKS S. I., WELSH J. H. Cholinesterases in rat liver mitochondria. Am J Physiol. 1951 Jun;165(3):620–623. doi: 10.1152/ajplegacy.1951.165.3.620. [DOI] [PubMed] [Google Scholar]
- ZAJICEK J., SYLVEN B., DATTA N. Attempts to demonstrate acetylcholinesterase activity in blood and bone-marrow cells by a modified thiocholine technique. J Histochem Cytochem. 1954 Mar;2(2):115–121. doi: 10.1177/2.2.115. [DOI] [PubMed] [Google Scholar]