Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1959 Dec 1;6(3):483–498. doi: 10.1083/jcb.6.3.483

Chemical and Morphological Studies of Bacterial Spore Formation

II. Spore and Parasporal Protein Formation in Bacillus cereus var. Alesti

I Elizabeth Young 1, Philip C Fitz-James 1
PMCID: PMC2224684  PMID: 13846631

Abstract

The development of both the spore and parasporal protein crystal of Bacillus cereus var. alesti was followed using chemical and cytological techniques. The changes which led to the formation of the fore-spore were similar to those already described for Bacillus cereus. However, adjacent to the developing fore-spore a small inclusion became discernible in phase contrast. This protein inclusion during its growth was differentiated from the chromatin and lipid-containing inclusions by sequential staining techniques. During spore and crystal formation no net synthesis of either nucleic acid was detected. Tracer studies with radioactive phosphorus confirmed that the spore chromatin was derived from that in the vegetative cell. These same studies also indicated that a turnover of ribonucleic acid occurred during the sporulation process. During their formation both the spore and crystal incorporated methionine-35S from the medium and from cellular material into a bound form. Sequential extractions with alkali and with alkaline-thioglycollate reagent revealed that the solubility characteristics of the mature crystal were possibly related to the presence of intermolecular disulphide bonds which developed after the major synthesis of the crystal was complete. The synthetic nature of sporogenesis and crystal formation is discussed with reference to the concept of "endotrophic" sporulation.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANGUS T. A. Association of toxicity with protein-crystalline inclusions of Bacillus sotto Ishiwata. Can J Microbiol. 1956 Apr;2(2):122–131. doi: 10.1139/m56-017. [DOI] [PubMed] [Google Scholar]
  2. BEN-ISHAI R. Dependence of protein synthesis on ribonucleic acid synthesis. II. Nonparticipation of preformed ribonucleic acid in protein synthesis. Biochim Biophys Acta. 1957 Dec;26(3):477–483. doi: 10.1016/0006-3002(57)90093-8. [DOI] [PubMed] [Google Scholar]
  3. CREASER E. H. Effect of 8-azaguanine on enzyme formation. Nature. 1955 Sep 17;176(4481):556–557. doi: 10.1038/176556a0. [DOI] [PubMed] [Google Scholar]
  4. CREASER E. H. Inhibition of induced enzyme formation by purine analogues. Nature. 1955 May 21;175(4464):899–900. doi: 10.1038/175899a0. [DOI] [PubMed] [Google Scholar]
  5. DAGLEY S., SYKES J. Effect of starvation upon the constitution of bacteria. Nature. 1957 Jun 15;179(4572):1249–1250. doi: 10.1038/1791249a0. [DOI] [PubMed] [Google Scholar]
  6. Doak B. W., Lamanna C. On the Antigenic Structure of the Bacterial Spore. J Bacteriol. 1948 Mar;55(3):373–380. doi: 10.1128/jb.55.3.373-380.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FITZ-JAMES P. C., TOUMANOFF C., YOUNG I. E. Localization of toxicity for silkworm larvae in the parasporal inclusion of Bacillus cereus var. alesti. Can J Microbiol. 1958 Aug;4(4):385–392. doi: 10.1139/m58-040. [DOI] [PubMed] [Google Scholar]
  8. FOSTER J. W. Morphogenesis in bacteria: some aspects of spore formation. Q Rev Biol. 1956 Jun;31(2):102–118. doi: 10.1086/401259. [DOI] [PubMed] [Google Scholar]
  9. FOSTER J. W., PERRY J. J. Intracellular events occurring during endotrophic sporulation in Bacillus mycoides. J Bacteriol. 1954 Mar;67(3):295–302. doi: 10.1128/jb.67.3.295-302.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GRELET N. Le déterminisme de la sporulation de Bacillus megatherium. 1. L'effet de l'épuisement de l'aliment carboné en milieu synthétique. Ann Inst Pasteur (Paris) 1951 Oct;81(4):430–440. [PubMed] [Google Scholar]
  11. HANNAY C. L., FITZ-JAMES P. The protein crystals of Bacillus thuringiensis Berliner. Can J Microbiol. 1955 Oct;1(8):694–710. doi: 10.1139/m55-083. [DOI] [PubMed] [Google Scholar]
  12. HARDWICK W. A., FOSTER J. W. On the nature of sporogenesis in some aerobic bacteria. J Gen Physiol. 1952 Jul;35(6):907–927. doi: 10.1085/jgp.35.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HERSHEY A. D. Conservation of nucleic acids during bacterial growth. J Gen Physiol. 1954 Nov 20;38(2):145–148. doi: 10.1085/jgp.38.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HUGGINS C., TAPLEY D. F., JENSEN E. V. Sulphydryl-disulphide relationships in the induction of gels in proteins by urea. Nature. 1951 Apr 14;167(4250):592–593. doi: 10.1038/167592a0. [DOI] [PubMed] [Google Scholar]
  15. KAY R. E., HARRIS D. C., ENTENMAN C. Quantification of the ninhydrin color reaction as applied to paper chromatography. Arch Biochem Biophys. 1956 Jul;63(1):14–25. doi: 10.1016/0003-9861(56)90004-2. [DOI] [PubMed] [Google Scholar]
  16. MANSON L. A. The metabolism of ribonucleic acid in normal and bacteriophage infected Escherichia coli. J Bacteriol. 1953 Dec;66(6):703–711. doi: 10.1128/jb.66.6.703-711.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MAZIA D. SH compounds in mitosis. I. The action of mercaptoethanol on the eggs of the sand dollar Dendraster excentricus. Exp Cell Res. 1958 Jun;14(3):486–494. doi: 10.1016/0014-4827(58)90156-3. [DOI] [PubMed] [Google Scholar]
  18. PERRY J. J., FOSTER J. W. Non-involvement of lysis during sporulation of Bacillus mycoides in distilled water. J Gen Physiol. 1954 Jan 20;37(3):401–409. doi: 10.1085/jgp.37.3.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. POWELL J. F., HUNTER J. R. Sporulation in distilled water. J Gen Physiol. 1953 May;36(5):601–606. doi: 10.1085/jgp.36.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. POWELL J. F., STRANGE R. E. Biochemical changes occurring during sporulation in Bacillus species. Biochem J. 1956 Aug;63(4):661–668. doi: 10.1042/bj0630661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pardee A. B. NUCLEIC ACID PRECURSORS AND PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1954 May;40(5):263–270. doi: 10.1073/pnas.40.5.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. REDFIELD R. R. Two-dimensional paper chromatographic systems with high resolving power for amino acids. Biochim Biophys Acta. 1953 Feb;10(2):344–345. doi: 10.1016/0006-3002(53)90260-1. [DOI] [PubMed] [Google Scholar]
  23. TOUMANOFF C., VAGO C. L'agent pathogène de la flacherie des vers à soie endémique dans la région des Cévennes: Bacillus cereus var. alesti var. nov. C R Hebd Seances Acad Sci. 1951 Dec 3;233(23):1504–1506. [PubMed] [Google Scholar]
  24. WYATT G. R., LOUGHHEED T. C., WYATT S. S. The chemistry of insect hemolymph; organic components of the hemolymph of the silkworm, Bombyx mori, and two other species. J Gen Physiol. 1956 Jul 20;39(6):853–868. doi: 10.1085/jgp.39.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. YOUNG I. E., FITZ-JAMES P. C. Chemical and morphological studies of bacterial spore formation. III. The effect of 8-azaguanine on spore and parasporal protein formation in Bacillus cereus var. alesti. J Biophys Biochem Cytol. 1959 Dec;6:499–506. doi: 10.1083/jcb.6.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. YOUNG I. E., FITZ-JAMES P. C. Pattern of synthesis of deoxyribonucleic acid in Bacillus cereus growing synchronously out of spores. Nature. 1959 Feb 7;183(4658):372–373. doi: 10.1038/183372a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES