Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1959 Dec 1;6(3):383–392. doi: 10.1083/jcb.6.3.383

The Striated Musculature of Blood Vessels

I. General Cell Morphology

H E Karrer 1
PMCID: PMC2224697  PMID: 14404587

Abstract

The musculature of small lung veins, of the thoracic portion of the inferior vena cava, and of other thoracic veins of the mouse have been studied in the electron microscope. Tissues were fixed in 1 per cent osmium tetroxide buffered with veronal, to which either sodium chloride or sucrose had been added. Methacrylate or araldite served as embedding matrices. Phosphotungstic acid or uranyl acetate was used to stain some of the preparations. Thin sections were examined in a Siemens and Halske Elmiskop Ib electron microscope. The entire musculature of the veins examined was of the striated type. It represents a variety of cardiac muscle, characterized by centrally located nuclei, typical mitochondria, and narrow I bands. Many I bands cannot be recognized at all. H and M bands are likewise indistinct. There is a double array of primary and secondary myofilaments. Mitochondria are large and numerous and contain many cristae. The endoplasmic reticulum consists of longitudinal tubules which run through the whole sarcomeres and bypass Z bands, and of transverse tubules which accompany Z bands. Some "triads," located at Z levels, consist of flattened vacuoles flanked by such transverse tubules. Small vesicles located at Z bands, close to the nucleus, and beneath the plasma membrane may represent still other portions of the reticulum.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENNETT H. S., PORTER K. R. An electron microscope study of sectioned breast muscle of the domestic fowl. Am J Anat. 1953 Jul;93(1):61–105. doi: 10.1002/aja.1000930104. [DOI] [PubMed] [Google Scholar]
  2. BERGMAN R. A. An experimental study of the non-fibrillar components in frog striated muscle. Bull Johns Hopkins Hosp. 1958 Dec;103(6):267–280. [PubMed] [Google Scholar]
  3. CAULFIELD J. B. Effects of varying the vehicle for OsO4 in tissue fixation. J Biophys Biochem Cytol. 1957 Sep 25;3(5):827–830. doi: 10.1083/jcb.3.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COUTEAUX R. Morphological and cytochemical observations on the post-synaptic membrane at motor end-plates and ganglionic synapses. Exp Cell Res. 1958;14(Suppl 5):294–322. [PubMed] [Google Scholar]
  5. EDWARDS G. A., RUSKA H., DE HARVEN E. Neuromuscular junctions in flight and tymbal muscles of the cicada. J Biophys Biochem Cytol. 1958 May 25;4(3):251–256. doi: 10.1083/jcb.4.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FAWCETT D. W., SELBY C. C. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958 Jan 25;4(1):63–72. doi: 10.1083/jcb.4.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GLAUERT A. M., GLAUERT R. H. Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol. 1958 Mar 25;4(2):191–194. doi: 10.1083/jcb.4.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GLAUERT A. M., GLAUERT R. H., ROGERS G. E. A new embedding medium for electron microscopy. Nature. 1956 Oct 13;178(4537):803–803. doi: 10.1038/178803a0. [DOI] [PubMed] [Google Scholar]
  9. HODGE A. J., HUXLEY H. E., SPIRO D. Electron microscope studies on ultrathin sections of muscle. J Exp Med. 1954 Feb;99(2):201–206. doi: 10.1084/jem.99.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HUXLEY A. F., TAYLOR R. E. Function of Krause's membrane. Nature. 1955 Dec 3;176(4492):1068–1068. doi: 10.1038/1761068a0. [DOI] [PubMed] [Google Scholar]
  11. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HUXLEY H. E. Electron microscope studies of the organisation of the filaments in striated muscle. Biochim Biophys Acta. 1953 Nov;12(3):387–394. doi: 10.1016/0006-3002(53)90156-5. [DOI] [PubMed] [Google Scholar]
  13. HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  15. KARRER H. E. An electronmicroscopic study of the fine structure of pulmonary capillaries and alveoli of the mouse; preliminary report. Bull Johns Hopkins Hosp. 1956 Feb;98(2):65–83. [PubMed] [Google Scholar]
  16. KARRER H. E. The ultrastructure of mouse lung; general architecture of capillary and alveolar walls. J Biophys Biochem Cytol. 1956 May 25;2(3):241–252. doi: 10.1083/jcb.2.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NAPOLITANO L., FAWCETT D. The fine structure of brown adipose tissue in the newborn mouse and rat. J Biophys Biochem Cytol. 1958 Nov 25;4(6):685–692. doi: 10.1083/jcb.4.6.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PALADE G. E. Intracisternal granules in the exocrine cells of the pancreas. J Biophys Biochem Cytol. 1956 Jul 25;2(4):417–422. doi: 10.1083/jcb.2.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PALADE G. E. The fine structure of mitochondria. Anat Rec. 1952 Nov;114(3):427–451. doi: 10.1002/ar.1091140304. [DOI] [PubMed] [Google Scholar]
  20. PALAY S. L. The morphology of synapses in the central nervous system. Exp Cell Res. 1958;14(Suppl 5):275–293. [PubMed] [Google Scholar]
  21. PEACHEY L. D., PORTER K. R. Intracellular impulse conduction in muscle cells. Science. 1959 Mar 13;129(3350):721–722. doi: 10.1126/science.129.3350.721. [DOI] [PubMed] [Google Scholar]
  22. POCHE R., LINDNER E. Untersuchungen zur Frage der Glanzstreifen des Herzmuskelgewebes beim Warmblüter und beim Kaltblüter. Z Zellforsch Mikrosk Anat. 1955;43(2):104–120. [PubMed] [Google Scholar]
  23. PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. PORTER K. R. The sarcoplasmic reticulum in muscle cells of Amblystoma larvae. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):163–170. doi: 10.1083/jcb.2.4.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. REGER J. F. Studies on the fine structure of normal and denervated neuromuscular junctions from mouse gastrocnemius. J Ultrastruct Res. 1959 Mar;2(3):269–282. doi: 10.1016/s0022-5320(59)80001-0. [DOI] [PubMed] [Google Scholar]
  26. ROBERTSON J. D. The ultrastructure of a reptilian myoneural junction. J Biophys Biochem Cytol. 1956 Jul 25;2(4):381–394. doi: 10.1083/jcb.2.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. ROTH L. E. An electron microscope study of the cytology of the protozoan Euplotes patella. J Biophys Biochem Cytol. 1957 Nov 25;3(6):985–1000. doi: 10.1083/jcb.3.6.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. RUDZINSKA M. A., SEDAR A. W. Mitochondria of protozoa. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):331–336. doi: 10.1083/jcb.2.4.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. RUSKA E., WOLFF O. Ein bochauflösendes 100-kV-Elektronenmikroskop mit Kleinfelddurchstrahlung. Z Wiss Mikrosk. 1956 Jan;62(8):465–509. [PubMed] [Google Scholar]
  30. RUSKA H., EDWARDS G. A., CAESAR R. A concept of intracellular transmission of excitation by means of the endoplasmic reticulum. Experientia. 1958 Mar 15;14(3):117–120. doi: 10.1007/BF02159249. [DOI] [PubMed] [Google Scholar]
  31. RUSKA H. The morphology of muscle fibers and muscle cells with different properties of conduction of excitation. Exp Cell Res. 1958;14(Suppl 5):560–567. [PubMed] [Google Scholar]
  32. SEDAR A. W., PORTER K. R. The fine structure of cortical components of Paramecium multimicronucleatum. J Biophys Biochem Cytol. 1955 Nov 25;1(6):583–604. doi: 10.1083/jcb.1.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. II. Functional variations in the enzymatic activity of microsomes. J Biophys Biochem Cytol. 1958 May 25;4(3):309–318. doi: 10.1083/jcb.4.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. SJOSTRAND F. S., ANDERSSON E. Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia. 1954 Sep 15;10(9):369–370. doi: 10.1007/BF02160542. [DOI] [PubMed] [Google Scholar]
  35. VAN BREEMEN V. L. Intercalated discs in heart muscle studied with the electron microscope. Anat Rec. 1953 Sep;117(1):49–63. doi: 10.1002/ar.1091170106. [DOI] [PubMed] [Google Scholar]
  36. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. WEINSTEIN H. J. An electron microscope study of cardiac muscle. Exp Cell Res. 1954 Aug;7(1):130–146. doi: 10.1016/0014-4827(54)90048-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES