Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1959 Dec 1;6(3):369–378. doi: 10.1083/jcb.6.3.369

Cytoplasmic Membranes and the Nuclear Membrane in the Flagellate Trichonympha

A V Grimstone 1
PMCID: PMC2224703  PMID: 13829396

Abstract

The structure of the nuclear and cytoplasmic membranes of Trichonympha, a complex flagellate, has been studied in the electron microscope. The nuclear membrane consists of two 70 A membranes, penetrated by numerous pores. Small (100 A) granules occur on the outer surface, around the rims of the pores. Granule-bearing membranes, only 30 to 40 A thick, form long, ribbon-shaped sacs, with 100 A granules on their outer surface. They apparently form close to the nucleus, from which they probably derive their granules. Smooth membranes occur in the parabasal bodies, which consist of stacks of 70 A membranes, joined at their edges in pairs to form flattened sacs. These can inflate and form cytoplasmic vesicles. A protein fibre is applied laterally to the pile of sacs. New sacs, replacing those lost by inflation, appear to form by a process involving the granular membranes, and there may be a transformation of one into the other. Starving eliminates granular membranes and results in a failure in the formation of new parabasal sacs. Refeeding reverses these effects. A parabasal body is a steady-state system, in which the rates of loss and gain of sacs are normally approximately equal. Parabasal bodies resemble the Golgi apparatus.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope. Exp Cell Res. 1955 Feb;8(1):147–158. doi: 10.1016/0014-4827(55)90051-3. [DOI] [PubMed] [Google Scholar]
  2. ARZAC J. P., FLORES L. G. Demonstration of Golgi zones by three technics for carbohydrates. Stain Technol. 1952 Jan;27(1):9–15. doi: 10.3109/10520295209105054. [DOI] [PubMed] [Google Scholar]
  3. BURGOS M. H., FAWCETT D. W. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955 Jul 25;1(4):287–300. doi: 10.1083/jcb.1.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CLERMONT Y., GLEGG R. E., LEBLOND C. P. Presence of carbohydrates in the acrosome of the guinea pig spermatozoon. Exp Cell Res. 1955 Jun;8(3):453–458. doi: 10.1016/0014-4827(55)90121-x. [DOI] [PubMed] [Google Scholar]
  5. EL-MOFTY M. M. Cytochemical localization of acid phosphatase in Trichonympha turkestanica Bernstein (Trichonymphina, Trichonymphidae). Nature. 1957 Dec 14;180(4598):1367–1367. doi: 10.1038/1801367a0. [DOI] [PubMed] [Google Scholar]
  6. GALL J. G. Small granules in the amphibian oocyte nucleus and their relationship to RNA. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):393–396. doi: 10.1083/jcb.2.4.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GAY H. Nucleocytoplasmic relations in Drosophila. Cold Spring Harb Symp Quant Biol. 1956;21:257–269. doi: 10.1101/sqb.1956.021.01.021. [DOI] [PubMed] [Google Scholar]
  8. LUFT J. H. Permanganate; a new fixative for electron microscopy. J Biophys Biochem Cytol. 1956 Nov 25;2(6):799–802. doi: 10.1083/jcb.2.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. REBHUN L. I. Electron microscopy of basophilic structures of some invertebrate oocytes. I. Periodic lamellane and the nuclear envelope. J Biophys Biochem Cytol. 1956 Jan 25;2(1):93–104. doi: 10.1083/jcb.2.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RHODIN J., DALHAMN T. Electron microscopy of the tracheal ciliated mucosa in rat. Z Zellforsch Mikrosk Anat. 1956;44(4):345–412. doi: 10.1007/BF00345847. [DOI] [PubMed] [Google Scholar]
  12. SCHNEIDER W. C., KUFF E. L. On the isolation and some biochemical properties of the Golgi substance. Am J Anat. 1954 Mar;94(2):209–224. doi: 10.1002/aja.1000940203. [DOI] [PubMed] [Google Scholar]
  13. SJOSTRAND F. S., HANZON V. Ultrastructure of Golgi apparatus of exocrine cells of mouse pancreas. Exp Cell Res. 1954 Nov;7(2):415–429. doi: 10.1016/s0014-4827(54)80087-5. [DOI] [PubMed] [Google Scholar]
  14. WISCHNITZER S. An electron microscope study of the nuclear envelope of amphibian oocytes. J Ultrastruct Res. 1958 Apr;1(3):201–222. doi: 10.1016/s0022-5320(58)80001-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES