Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1959 Dec 1;6(3):343–352. doi: 10.1083/jcb.6.3.343

Intercellular Attachment in the Epithelium of Hydra As Revealed by Electron Microscopy

R L Wood 1
PMCID: PMC2224706  PMID: 13845833

Abstract

In Hydra adjacent epithelial cells are bound firmly to each other by desmosomes of a type not described in detail hitherto. The most prominent feature of these desmosomes is the presence of a series of parallel lamellae which bridge the intercellular space and connect the two apposed cell surfaces directly. These structures, here termed intercellular attachment lamellae, display two peaks of density about 50 A apart. These dense lines appear in some instances to be continuous with the outer dense components of the plasma unit membranes of the attached cells. The presence of prominent lamellae in intercellular attachments is sufficiently distinctive to deserve special terminology; accordingly, the term septate desmosome is proposed. It is noted that septate desmosomes may have been seen in other animals in instances where published electron micrographs show cross-striations or prominent connections in regions of intercellular attachment. It is suggested that septate desmosomes in Hydra, in addition to binding cells firmly to each other, form barriers to the movement of water into intercellular spaces and thus help to protect the organism's internal environment. Observations on the use of phosphotungstic acid for improving contrast in materials embedded in epoxy resins are also recorded.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALINSKY B. I. An electro microscopic investigation of the mechanisms of adhesion of the cells in a sea urchin blastula and gastrula. Exp Cell Res. 1959 Feb;16(2):429–433. doi: 10.1016/0014-4827(59)90275-7. [DOI] [PubMed] [Google Scholar]
  2. FAWCETT D. W., SELBY C. C. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958 Jan 25;4(1):63–72. doi: 10.1083/jcb.4.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GLAUERT A. M., GLAUERT R. H. Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol. 1958 Mar 25;4(2):191–194. doi: 10.1083/jcb.4.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HAMA K. Some observations on the fine structure of the giant nerve fibers of the earthworm, Eisenia foetida. J Biophys Biochem Cytol. 1959 Aug;6(1):61–66. doi: 10.1083/jcb.6.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HORSTMANN E., KNOOP A. Elektronenmikroskopische Studien an der Epidermis. I. Rattenpfote. Z Zellforsch Mikrosk Anat. 1958;47(3):348–362. [PubMed] [Google Scholar]
  6. ODLAND G. F. The fine structure of the interrelationship of cells in the human epidermis. J Biophys Biochem Cytol. 1958 Sep 25;4(5):529–538. [PMC free article] [PubMed] [Google Scholar]
  7. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. PUCHTLER H., LEBLOND C. P. Histochemical analysis of cell membranes and associated structures as seen in the intestinal epithelium. Am J Anat. 1958 Jan;102(1):1–31. doi: 10.1002/aja.1001020102. [DOI] [PubMed] [Google Scholar]
  9. ROBERTSON J. D. New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1043–1048. doi: 10.1083/jcb.3.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SELBY C. C. An electron microscope study of the epidermis of mammalian skin in thin sections. I. Dermo-epidermal junction and basal cell layer. J Biophys Biochem Cytol. 1955 Sep 25;1(5):429–444. doi: 10.1083/jcb.1.5.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SJOSTRAND F. S., ANDERSSON-CEDERGREN E., DEWEY M. M. The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res. 1958 Apr;1(3):271–287. doi: 10.1016/s0022-5320(58)80008-8. [DOI] [PubMed] [Google Scholar]
  12. SJOSTRAND F. S., ANDERSSON E. Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia. 1954 Sep 15;10(9):369–370. doi: 10.1007/BF02160542. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES