Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Sep;135(3):976–980. doi: 10.1128/jb.135.3.976-980.1978

Cyclic AMP binding proteins and cyclic AMP-dependent protein kinase from Blastocladiella emersonii.

P M Silverman
PMCID: PMC222472  PMID: 211118

Abstract

The stoichiometry of cyclic AMP binding protein to cyclic AMP in sporulating cells of Blastocladiella emersonii and the resistance of protein-bound cyclic AMP to enzyme-catalyzed hydrolysis suggest that the distribution of cyclic AMP between free and protein-bound pools is an important factor in cyclic AMP metabolism. Most but not all of the cyclic AMP binding protein in sporulating cells is associated with a cyclic AMP-dependent protein kinase.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavo J. A., Bechtel P. J., Krebs E. G. Mechanisms of control for cAMP-dependent protein kinase from skeletal muscle. Adv Cyclic Nucleotide Res. 1975;5:241–251. [PubMed] [Google Scholar]
  2. Brostrom C. O., Corbin J. D., King C. A., Krebs E. G. Interaction of the subunits of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of muscle. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2444–2447. doi: 10.1073/pnas.68.10.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Epstein P. M., Silverman P. M. Induction of cyclic AMP phosphodiesterase in Blastocladiella emersonii and its relation to cyclic AMP metabolism. J Bacteriol. 1978 Sep;135(3):968–975. doi: 10.1128/jb.135.3.968-975.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hofmann F., Bechtel P. J., Krebs E. G. Concentrations of cyclic AMP-dependent protein kinase subunits in various tissues. J Biol Chem. 1977 Feb 25;252(4):1441–1447. [PubMed] [Google Scholar]
  6. Khac L. D., Harbon S., Clauser H. J. Intracellular titration of cyclic AMP bound to receptor proteins and correlation with cyclic-AMP levels in the surviving rat diaphragm. Eur J Biochem. 1973 Dec 3;40(1):177–185. doi: 10.1111/j.1432-1033.1973.tb03183.x. [DOI] [PubMed] [Google Scholar]
  7. Krebs E. G. Protein kinases. Curr Top Cell Regul. 1972;5:99–133. [PubMed] [Google Scholar]
  8. Murphy M. N., Lovett J. S. RNA and protein synthesis during zoospore differentiation in synchronized cultures of Blastocladiella. Dev Biol. 1966 Aug;14(1):68–95. doi: 10.1016/0012-1606(66)90006-6. [DOI] [PubMed] [Google Scholar]
  9. O'Dea R. F., Haddox M. K., Goldberg N. D. Interaction with phosphodiesterase of free and kinase-complexed cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1971 Oct 25;246(20):6183–6190. [PubMed] [Google Scholar]
  10. Rubin C. S., Erlichman J., Rosen O. M. Cyclic AMP-dependent protein kinase from bovine heart muscle. Methods Enzymol. 1974;38:308–315. doi: 10.1016/0076-6879(74)38047-0. [DOI] [PubMed] [Google Scholar]
  11. Sy J., Richter D. Separation of a cyclic 3',5'-adenosine monophosphate binding protein from yeast. Biochemistry. 1972 Jul 18;11(15):2784–2787. doi: 10.1021/bi00765a008. [DOI] [PubMed] [Google Scholar]
  12. Takai Y., Yamamura H., Nishizuka Y. Adenosine 3':5'-monophosphate-dependent protein kinase from yeast. J Biol Chem. 1974 Jan 25;249(2):530–535. [PubMed] [Google Scholar]
  13. Terasaki W. L., Brooker G. Cardiac adenosine 3':5'-monophosphate. Free and bound forms in the isolated rat atrium. J Biol Chem. 1977 Feb 10;252(3):1041–1050. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES