Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 2007 Dec 10;52(2):761–766. doi: 10.1128/AAC.01128-07

In Vitro Activities of Doripenem and Six Comparator Drugs against 423 Aerobic and Anaerobic Bacterial Isolates from Infected Diabetic Foot Wounds

Ellie J C Goldstein 1,2,*, Diane M Citron 1, C Vreni Merriam 1, Yumi A Warren 1, Kerin L Tyrrell 1, Helen T Fernandez 1
PMCID: PMC2224786  PMID: 18070958

Abstract

Against 182 anaerobe and 241 aerobe strains obtained from diabetic foot infections, doripenem was the most active carbapenem against Pseudomonas aeruginosa (MIC90, 2 μg/ml), more active than imipenem against Proteus mirabilis, and ertapenem was more active against Escherichia coli and Klebsiella spp. The MIC50 and MIC90 values were ≤0.125 μg/ml for methicillin-sensitive Staphylococcus aureus and all streptococci and 0.25/1 for Bacteroides fragilis.


Diabetic foot infections (DFIs) are common complications and account for ∼20% of all hospitalizations for the >20 million diabetics in the United States (3). Although early-stage DFIs are generally monobacterial due to Staphylococcus aureus, more advanced DFIs, especially those associated with vascular insufficiency, usually involve aerobic gram-negative rods and anaerobes (9, 10), with an average of 4.1 to 5.8 bacterial species per specimen, composed of one to eight aerobe species and one to nine anaerobe species (4, 9). The Infectious Diseases Society of America guidelines (15) recommend that moderate to severe DFIs receive parenteral therapy, including carbapenems.

Doripenem is a synthetic, 1-β-methyl parenteral carbapenem with broad activity against gram-positive and gram-negative aerobic pathogens, including some carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa strains, as well as anaerobic bacteria (1, 2, 8, 11-13, 18), and would seem to have therapeutic potential in mixed aerobic-anaerobic diabetic foot infections. Therefore, we tested it against 182 anaerobic and 241 aerobic strains recovered from patients with symptomatic DFIs.

The isolates (Table 1) were collected between 2001 and 2007 from various studies and were identified by standard criteria (14, 16) and by molecular techniques for unusual isolates. The carbapenem standard laboratory powders were obtained from their manufacturers; ampicillin and clindamycin were obtained from Sigma Chemicals, St. Louis, MO.

TABLE 1.

Comparative in vitro activity [] of doripenem against 251 aerobic and 192 anaerobic strains isolated from pretreatment cultures of patients with diabetic foot infections

Organism (no. of isolates) and antimicrobial agent MIC (μg/ml)
% Resistanta
Range MIC50 MIC90
Aerobes
    Escherichia coli (15)
        Doripenem ≤0.015-0.06 0.03 0.03 0
        Ertapenem ≤0.015-1 ≤0.015 0.06 0
        Imipenem 0.125-1 0.125 0.25 0
        Meropenem ≤0.015-0.06 0.03 0.03 0
        Ampicillin/sulbactam 2->64 32 >64 60
        Piperacillin-tazobactam 1->128 2 128 33
    Enterobacter spp. (15)b
        Doripenem 0.03-0.25 0.06 0.25 0
        Ertapenem ≤0.015-4 0.06 0.5 7
        Imipenem 0.25-2 1 2 0
        Meropenem 0.03-0.5 0.06 0.5 0
        Ampicillin/sulbactam 4->64 16 64 67
        Piperacillin-tazobactam 1-128 4 64 13
    Klebsiella spp. (15)c
        Doripenem 0.06-0.125 0.06 0.125 0
        Ertapenem ≤0.015-0.03 ≤0.015 ≤0.015 0
        Imipenem 0.125-1 0.25 1 0
        Meropenem 0.03-0.125 0.03 0.06 0
        Ampicillin/sulbactam 4-32 8 16 27
        Piperacillin-tazobactam 1-16 2 4 0
    Proteus-Providencia group spp. (15)d
        Doripenem 0.03-0.5 0.125 0.25 0
        Ertapenem ≤0.015-0.25 ≤0.015 0.25 0
        Imipenem 0.06-4 0.5 4 0
        Meropenem ≤0.015-0.25 0.06 0.125 0
        Ampicillin/sulbactam 0.5-64 8 64 27
        Piperacillin-tazobactam 0.25-1 0.25 0.5 0
    Pseudomonas aeruginosa (15)
        Doripenem 0.125-4 0.25 2 7
        Ertapenem 2->32 8 32 NAm
        Imipenem 0.5-16 2 8 13
        Meropenem 0.125-16 0.5 4 7
        Ampicillin/sulbactam 64->64 >64 >64 NA
        Piperacillin-tazobactam 4-32 8 16 0
    Corynebacterium amycolatum (14)
        Doripenem 0.06->32 0.5 2 NA
        Ertapenem 0.5->32 2 8 NA
        Imipenem 0.03->32 0.06 2 7
        Meropenem 0.06->32 0.5 2 7
        Ampicillin/sulbactam 0.125->64 1 8 7
        Piperacillin-tazobactam ≤0.06->128 4 32 21
        Clindamycin 1->64 >64 >64 100
    Corynebacterium species, group I (14)e
        Doripenem 0.25->32 1 8 NA
        Ertapenem 0.5->32 1 32 NA
        Imipenem 0.06->32 0.25 32 30
        Meropenem 0.125->32 1 16 20
        Ampicillin/sulbactam 1->64 >64 >64 80
        Piperacillin-tazobactam 8->128 >128 >128 90
        Clindamycin >64->64 >64 >64 100
    Corynebacterium species, group II (18)f
        Doripenem ≤0.015-0.25 0.125 0.25 NA
        Ertapenem ≤0.015-1 0.5 1 NA
        Imipenem ≤0.015-0.125 0.03 0.125 0
        Meropenem ≤0.015-0.25 0.125 0.25 0
        Ampicillin-sulbactam ≤0.015-2 0.5 2 0
        Piperacillin-tazobactam ≤0.06-32 4 16 17
        Clindamycin ≤0.06->64 2 >64 78
    Staphylococcus aureus, methicillin resistant (18)
        Doripenem 0.06-16 0.5 8 100
        Ertapenem 0.5->32 2 >32 100
        Imipenem 0.06-16 0.25 4 100
        Meropenem 0.25-32 2 16 100
        Ampicillin/sulbactam 4-16 8 16 100
        Piperacillin-tazobactam 8-128 64 128 100
        Clindamycin 0.125->64 0.125 >64 39
    Staphylococcus aureus, methicillin sensitive (41)
        Doripenem ≤0.015-0.06 0.03 0.03 0
        Ertapenem 0.125-0.5 0.125 0.25 0
        Imipenem ≤0.015-0.03 ≤0.015 0.03 0
        Meropenem 0.06-0.25 0.06 0.125 0
        Ampicillin/sulbactam 0.06-8 1 4 0
        Piperacillin-tazobactam 0.25-8 1 2 0
        Clindamycin 0.125-0.25 0.125 0.25 0
    Staphylococcus epidermidis (15)
        Oxacillin 67
        Doripenem ≤0.015-2 0.25 2 67
        Ertapenem 0.25-8 2 8 67
        Imipenem ≤0.015-0.5 0.125 0.5 67
        Meropenem 0.06-4 1 4 67
        Ampicillin/sulbactam ≤0.03-4 4 4 67
        Piperacillin-tazobactam ≤0.06-4 1 4 67
        Clindamycin 0.125->64 0.25 >64 33
    Staphylococcus haemolyticus (15)
        Oxacillin 73
        Doripenem 0.125-32 0.5 16 73
        Ertapenem 0.5->32 4 >32 73
        Imipenem ≤0.015->32 0.06 16 73
        Meropenem 0.06->32 1 32 73
        Ampicillin/sulbactam 1-16 4 16 73
        Piperacillin-tazobactam 1-128 8 128 73
        Clindamycin ≤0.06->64 0.125 8 13
    Staphylococcus lugdunensis (15)
        Oxacillin 0
        Doripenem 0.03-0.25 0.125 0.125 0
        Ertapenem 0.5-2 0.5 1 0
        Imipenem ≤0.015-0.125 0.03 0.06 0
        Meropenem 0.125-0.5 0.25 0.5 0
        Ampicillin/sulbactam 0.06-8 0.5 4 0
        Piperacillin-tazobactam 0.2-4 2 4 0
        Clindamycin ≤0.06->64 0.125 >64 13
    Streptococcus agalactiae (15)
        Doripenem ≤0.015-0.03 ≤0.015 0.03 0
        Ertapenem 0.06-0.06 0.06 0.06 0
        Imipenem ≤0.015-0.03 ≤0.015 ≤0.015 0
        Meropenem 0.03-0.06 0.06 0.06 0
        Ampicillin/sulbactam 0.06-0.125 0.125 0.125 0
        Piperacillin-tazobactam 0.25-0.5 0.25 0.5 0
        Clindamycin ≤0.06->64 0.125 >64 33
    Streptococcus spp. (15)g
        Doripenem ≤0.015 ≤0.015 ≤0.015 0
        Ertapenem ≤0.015 ≤0.015 ≤0.015 0
        Imipenem ≤0.015 ≤0.015 ≤0.015 0
        Meropenem ≤0.015 ≤0.015 ≤0.015 0
        Ampicillin/sulbactam ≤0.03 ≤0.03 ≤0.03 0
        Piperacillin-tazobactam ≤0.06 ≤0.06 ≤0.06 0
        Clindamycin ≤0.06->64 0.125 >64 13
Anaerobes
    Bacteroides fragilis (10)
        Doripenem 0.25-0.25 0.25 0.25 0
        Ertapenem 0.25-1 0.25 1 0
        Imipenem 0.03-0.125 0.125 0.125 0
        Meropenem 0.125-0.25 0.125 0.25 0
        Ampicillin/sulbactam 1-16 1 4 0
        Piperacillin-tazobactam 0.125-2 0.25 0.25 0
        Clindamycin 0.125->64 0.5 2 10
        Metronidazole 0.5-1 0.5 1 0
    Bacteroides fragilis group (15)h
        Doripenem 0.25-1 0.25 1 0
        Ertapenem 0.25-4 1 2 0
        Imipenem 0.03-1 0.5 1 0
        Meropenem 0.06-1 0.25 1 0
        Ampicillin/sulbactam 0.5-16 4 16 0
        Piperacillin-tazobactam 0.25-16 2 16 0
        Clindamycin ≤0.03->64 2 >64 20
        Metronidazole 0.125-1 0.5 1 0
    Porphyromonas spp. (17)i
        Doripenem ≤0.015-0.06 ≤0.015 0.03 0
        Ertapenem ≤0.015-0.125 ≤0.015 0.06 0
        Imipenem ≤0.015-0.03 <0.015 ≤0.015 0
        Meropenem ≤0.015-0.125 ≤0.015 ≤0.015 0
        Ampicillin/sulbactam ≤0.03-0.25 ≤0.03 0.25 0
        Piperacillin-tazobactam ≤0.06 ≤0.06 ≤0.06 0
        Clindamycin ≤0.03-64 ≤0.03 64 12
        Metronidazole ≤0.06-4 0.05 0.25 0
    Prevotella bivia (14)
        Doripenem ≤0.015-0.125 0.06 0.125 0
        Ertapenem 0.03-0.5 0.25 0.5 0
        Imipenem ≤0.015-0.03 0.03 0.03 0
        Meropenem ≤0.015-0.125 0.06 0.125 0
        Ampicillin/sulbactam ≤0.03-4 1 2 0
        Piperacillin-tazobactam <0.06 ≤0.06 ≤0.06 0
        Clindamycin ≤0.03->64 ≤0.03 >64 21
        Metronidazole 0.25-4 4 4 0
    Clostridium perfringens (10)
        Doripenem ≤0.015-0.03 ≤0.015 0.03 0
        Ertapenem 0.03-0.125 0.06 0.125 0
        Imipenem 0.03-0.125 0.06 0.125 0
        Meropenem ≤0.015 ≤0.015 ≤0.015 0
        Ampicillin/sulbactam ≤0.03-0.125 ≤0.03 0.06 0
        Piperacillin-tazobactam ≤0.06-0.125 ≤0.06 0.125 0
        Clindamycin ≤0.03-4 1 1 0
        Metronidazole 0.5-2 1 1 0
    Clostridium spp. (13)j
        Doripenem ≤0.015-1 0.06 1 0
        Ertapenem ≤0.015-8 0.25 2 0
        Imipenem ≤0.015-2 0.25 2 0
        Meropenem ≤0.015-2 0.06 1 0
        Ampicillin/sulbactam ≤0.03-0.5 0.06 0.5 0
        Piperacillin-tazobactam ≤0.06-8 0.5 8 0
        Clindamycin ≤0.03-32 0.5 16 23
        Metronidazole ≤0.06-1 0.125 0.25 0
    Propionibacterium acnes (14)
        Doripenem 0.03-0.25 0.06 0.125 0
        Ertapenem ≤0.06-0.5 0.125 0.25 0
        Imipenem ≤0.015 ≤0.015 ≤0.015 0
        Meropenem 0.06-0.5 0.125 0.25 0
        Ampicillin/sulbactam ≤0.03-0.125 0.06 0.125 0
        Piperacillin-tazobactam ≤0.06-0.5 0.125 0.5 0
        Clindamycin ≤0.03-2 ≤0.03 2 0
        Metronidazole >32->32 >32 >32 100
    Anaerococcus spp. (22)k
        Doripenem ≤0.015-0.5 ≤0.015 0.06 0
        Ertapenem ≤0.015-2 0.125 0.25 0
        Imipenem ≤0.015-0.125 ≤0.015 0.03 0
        Meropenem ≤0.015-0.25 0.03 0.125 0
        Ampicillin/sulbactam ≤0.03-0.5 ≤0.03 0.125 0
        Piperacillin-tazobactam ≤0.06-0.25 ≤0.06 0.25 0
        Clindamycin ≤0.03->64 0.125 64 18
        Metronidazole 0.125-2 0.5 1 0
    Finegoldia magna (30)
        Doripenem ≤0.015-0.25 0.06 0.125 0
        Ertapenem ≤0.015-1 0.06 0.125 0
        Imipenem ≤0.015-0.25 0.03 0.06 0
        Meropenem ≤0.015-0.5 0.06 0.125 0
        Ampicillin/sulbactam ≤0.03-0.5 0.125 0.25 0
        Piperacillin-tazobactam ≤0.06-0.5 ≤0.06 0.125 0
        Clindamycin ≤0.03->64 0.5 2 7
        Metronidazole 0.125-1 0.5 1 0
    Peptoniphilus asaccharolyticus (20)
        Doripenem ≤0.015-0.125 ≤0.015 0.06 0
        Ertapenem ≤0.015-1 ≤0.015 0.25 0
        Imipenem ≤0.015-0.06 ≤0.015 0.03 0
        Meropenem ≤0.015-0.125 ≤0.015 0.125 0
        Ampicillin/sulbactam ≤0.03-0.5 0.06 0.25 0
        Piperacillin-tazobactam ≤0.06-0.5 ≤0.06 0.125 0
        Clindamycin ≤0.03->64 0.125 >64 25
        Metronidazole 0.125-2 0.5 2 0
    Peptostreptococcus spp. (17)l
        Doripenem 0.03-0.25 0.06 0.25 0
        Ertapenem ≤0.015-0.5 0.25 0.5 0
        Imipenem ≤0.015-0.06 0.03 0.06 0
        Meropenem 0.03-0.25 0.125 0.25 0
        Ampicillin/sulbactam ≤0.03-0.5 0.06 0.125 0
        Piperacillin-tazobactam ≤0.06-0.5 ≤0.06 0.25 0
        Clindamycin ≤0.03-2 0.125 0.5 0
        Metronidazole 0.125-1 0.25 1 0
a

For aerobes, includes the value intermediate and resistant MICs; for anaerobes, the value includes resistant MICs only.

b

Enterobacter aerogenes (n = 4), E. cloacae (n = 11).

c

Klebsiella oxytoca (n = 9), K. pneumoniae (n = 6).

d

Proteus mirabilis (n = 9), P. vulgaris (n = 3), P. rettgeri (n = 3).

e

Corynebacterium aurimucosum (n = 2), C. jeikeium (n = 6), C. minutissimum (n = 1), C. ureolyticum (n = 1).

f

C. striatum (n = 9), C. accolans (n = 1), C. simulans (n = 4), C. xerosis (n = 4).

g

Streptococcus dysgalactiae subsp. equisimilis (n = 12), S. pyogenes (n = 3).

h

Bacteroides caccae (n = 1), B. ovatus) (n = 3), B. stercoris (n = 1), B. thetaiotaomicron (n = 3), B. uniformis (n = 1), B. vulgatus (n = 3), Parabacteroides distasonis (n = 1), P. merdae (n = 2).

i

Porphyromonas asaccharolytica (n = 7), P. somerae (n = 10).

j

Clostridium aminovalericum (n = 1), C. cadaveris (n = 4), C. clostridioforme (n = 3), C. innocuum (n = 1), C. malenomenatum (n = 1), C. sphenoides (n = 1), C. subterminale (n = 2).

k

Anaerococcus prevotii (n = 14), A. tetradius (n = 6), A. vaginalis (n = 2).

l

Peptostreptococcus anaerobius (n = 9), P. micros (n = 8).

m

NA, not available.

Frozen cultures of anaerobes were transferred twice on brucella agar supplemented with hemin, vitamin K1, and 5% sheep blood to assure purity and good growth. Susceptibility testing was performed by the agar dilution method according to Clinical and Laboratory Standards Institute standard M11-A7 (7). Serial twofold dilutions of antimicrobial agents were prepared on the day of the test and added to the molten agar to prepare the plates. Inocula were applied with a Steers replicator (Craft Machine, Inc., Chester, PA) to a final concentration of 105 CFU/spot. Control plates without antimicrobial agents were inoculated before and after each set of drug-containing plates. Plates were incubated at 37°C for 44 to 48 h in an anaerobic chamber (Anaerobe Systems, Morgan Hill, CA). The MIC was defined as the lowest concentration of an agent that yielded no growth or a marked change in the appearance of growth compared to the control plates.

Aerobic isolates were subcultured onto Trypticase soy blood agar and tested by the broth microdilution method using cation-adjusted Muller-Hinton broth, with lysed horse blood supplementation for streptococci and corynebacteria (5, 6). The trays were prepared in-house with serial twofold dilutions of the drugs by using a Quick-Spense apparatus (Sandy Springs Instrument Co., Germantown, MD) and stored at −70°C until use. Colonies were suspended from overnight growth and added to the trays for a final inoculum of approximately 5 × 105 CFU/ml. The trays were examined after 18 to 24 h of incubation at 37°C (up to 48 h for some Corynebacterium strains). Quality control strains tested included S. aureus ATCC 29213, Escherichia coli ATCC 25922, Bacteroides fragilis ATCC 25285, and Clostridium difficile ATCC 700057.

The results of our study are presented in Table 1. The determined doripenem MICs for the quality control strains were as follows: S. aureus, 0.03 μg/ml (three times) and ≤0.015 μg/ml (twice); E. coli, ≤0.015 μg/ml (twice) and 0.03 μg/ml (once); Enterococcus faecalis, 2 μg/ml (three times) and 4 μg/ml (once); B. fragilis, 0.125 μg/ml (three times); and C. difficile, 2 μg/ml (three times).

Doripenem was the most active carbapenem against P. aeruginosa (MIC90, 2 μg/ml); it was fourfold more active than imipenem and twice as active as meropenem. Doripenem was more active (MIC90, 0.25 μg/ml) than imipenem (MIC90, 4 μg/ml) against Proteus mirabilis and generally equivalent to ertapenem and meropenem (MIC90, 0.125 μg/ml). The doripenem MICs for all other enteric rods (E. coli, Enterobacter spp., and Klebsiella spp.) were ≤0.25 μg/ml. It was also active against gram-positive aerobes with the exception of 3 of 42 Corynebacterium strains (one each of C. amycolatum, C. jeikeium, and C. ureolyticum) and 3 of 15 S. haemolyticus strains, which had MICs of ≥8 μg/ml. Nine corynebacterial strains, including all six strains of C. jeikeium, had MICs of >64 μg/ml for ampicillin-sulbactam and ≥128 μg/ml for piperacillin-tazobactam. The doripenem MICs for methicillin-susceptible S. aureus, S. lugdunensis, and all streptococci were ≤0.125 μg/ml. All 182 anaerobes were susceptible to doripenem at ≤1 μg/ml. The doripenem MIC for B. fragilis was 0.25 μg/ml, and the MIC50 and MIC90 for the B. fragilis group, including the clindamycin-resistant strains, were 0.25 and 1 μg/ml, respectively. This finding was similar to the activities of imipenem and meropenem but more active than ertapenem. All anaerobic gram-positive cocci were susceptible to doripenem at ≤0.5 μg/ml, including four clindamycin-resistant strains of Anaerococcus.

Our study concurs with those of other investigators, who also found doripenem to be active against P. aeruginosa strains resistant to other carbapenems (1, 8). Sayko et al. (18) concluded that, compared to other carbapenems, doripenem has “the greatest ability to prevent the emergence of resistant mutants.” Likewise, Fritsche et al. (8) tested >6,200 strains of Enterobacteriaceae and found doripenem to be “4- to 32-fold more active than imipenem against wild-type isolates.” We found that doripenem was more active than imipenem against P. mirabilis. Doripenem's MICs for all other enteric rods (E. coli, E. aerogenes, and Klebsiella spp.) were ≤0.25 μg/ml, none of which was an extended-spectrum β-lactamase producer, whereas ertapenem was twofold more active against many strains of E. coli and Klebsiella.

Jones et al. (12) tested doripenem against 10 strains of multiple-drug-resistant Corynebacterium species and found that only 40% were susceptible to doripenem at ≤4 μg/ml but did not specify the isolates further except to say that some were C. jeikeium. In our study, 5 of 6 C. jeikeium strains were susceptible to doripenem at ≤1 μg/ml, as were all C. striatum, C. simulans, C. xerosis, and 10 of 12 C. amycolatum strains.

Wexler et al. (19) studied the activity of doripenem and five comparator agents against 364 anaerobes isolated from general clinical sources and found it to have “excellent activity against a broad range of anaerobes,” with a geometric MIC of 0.3 μg/ml and an MIC90 of 1 μg/ml. All 182 anaerobes that we tested had doripenem MICs of ≤1 μg/ml. Propionibacterium acnes strains were all susceptible at ≤0.25 μg/ml. Anaerobic gram-positive cocci (Anaerococcus prevotii, Anaerococcus tetradius, Finegoldia magna, Peptostreptococcus micros, and Peptoniphilus asaccharolyticus) were all susceptible at ≤0.5 μg/ml, and all clostridia were susceptible to doripenem at ≤1 μg/ml. Wexler et al. (19) noted that three stains of B. fragilis group species required ≥8 μg of doripenem/ml for inhibition and suggested that “overexpression of efflux pumps might contribute to the development of resistance.” Pumbwe et al. (17) confirmed that many agents, including doripenem, could select for resistance of B. fragilis species by overexpression of efflux pumps. We did not encounter any resistant strains perhaps due to a difference in isolate sources or patient populations in our studies.

Our study demonstrated that doripenem has excellent activity against a wide range of aerobes and anaerobes isolated from DFIs and is a promising agent for the treatment of DFIs.

Acknowledgments

This study was funded in part by a grant from Johnson & Johnson Research & Development Institute.

We thank Judee H. Knight and Alice E. Goldstein for various forms of assistance.

Footnotes

Published ahead of print on 10 December 2007.

REFERENCES

  • 1.Anderson, D. L. 2006. Doripenem. Drugs Today 42:399-404. [DOI] [PubMed] [Google Scholar]
  • 2.Anonymous. 2003. Doripenem: S 4661. Drugs R. D. 4:363-365. [DOI] [PubMed] [Google Scholar]
  • 3.Centers for Disease Control. 2005. National diabetes fact sheet. Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/diabetes/pubs/factsheets.htm.
  • 4.Citron, D. M., E. J. C. Goldstein, C. V. Merriam, B. A. Lipsky, and M. A. Abramson. 2007. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. Clin. Microbiol. 45:2819-2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Clinical and Laboratory Standards Institute. 2003. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, sixth ed. Document M7-A6. CLSI, Wayne, PA.
  • 6.Clinical and Laboratory Standards Institute. 2006. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guidlines. Document M45-A. CLSI, Wayne, PA.
  • 7.Clinical and Laboratory Standards Institute. 2007. Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard-sixth ed. Document M11-A7. CLSI, Wayne, PA.
  • 8.Fritsche, T. R., M. G. Stilwell, and R. N. Jones. 2005. Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). Clin. Microbiol. Infect. 11:974-984. [DOI] [PubMed] [Google Scholar]
  • 9.Gerding, D. N. 1995. Foot infections in diabetic patients: the role of anaerobes. Clin. Infect. Dis. 20(Suppl. 2):S283-S288. [DOI] [PubMed] [Google Scholar]
  • 10.Goldstein, E. J. C., D. M. Citron, and C. A. Nesbit. 1996. Diabetic foot infections. Bacteriology and activity of 10 oral antimicrobial agents against bacteria isolated from consecutive cases. Diabetes Care 19:638-641. [DOI] [PubMed] [Google Scholar]
  • 11.Iso, Y., T. Irie, T. Iwaki, M. Kii, Y. Sendo, K. Motokawa, and Y. Nishitani. 1996. Synthesis and modification of a novel 1-β-methyl carbapenem antibiotic, S-4661. J. Antibiot. 49:478-484. [DOI] [PubMed] [Google Scholar]
  • 12.Jones, R. N., H. K. Huynh, and D. J. Biedenbach. 2004. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob. Agents Chemother. 48:3136-3140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jones, R. N., H. S. Sader, and T. R. Fritsche. 2005. Comparative activity of doripenem and three other carbapenems tested against gram-negative bacilli with various beta-lactamase resistance mechanisms. Diagn. Microbiol. Infect. Dis. 52:71-74. [DOI] [PubMed] [Google Scholar]
  • 14.Jousimies-Somer, H. R., P. Summanen, D. M. Citron, E. J. Baron, H. M. Wexler, and S. M. Finegold. 2002. Wadsworth-KTL anaerobic bacteriology manual. Star Publishing, Belmont, CA.
  • 15.Lipsky, B. A., A. R. Berendt, H. G. Deery, J. M. Embil, W. S. Joseph, A. W. Karchmer, J. L. LeFrock, D. P. Lew, J. T. Mader, C. Norden, and J. S. Tan. 2004. Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 39:885-910. [DOI] [PubMed] [Google Scholar]
  • 16.Murray, P. R., and E. J. Baron. 2007. Manual of clinical microbiology, vol. 1. ASM Press, Washington, DC.
  • 17.Pumbwe, L., D. Glass, and H. M. Wexler. 2006. Efflux pump overexpression in multiple-antibiotic-resistant mutants of. Antimicrob. Agents Chemother. 50:3150-3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Sakyo, S., H. Tomita, K. Tanimoto, S. Fujimoto, and Y. Ike. 2006. Potency of carbapenems for the prevention of carbapenem-resistant mutants of Pseudomonas aeruginosa: the high potency of a new carbapenem doripenem. J. Antibiot. 59:220-228. [DOI] [PubMed] [Google Scholar]
  • 19.Wexler, H. M., A. E. Engel, D. Glass, and C. Li. 2005. In vitro activities of doripenem and comparator agents against 364 anaerobic clinical isolates. Antimicrob. Agents Chemother. 49:4413-4417. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES