Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1960 Jun 1;7(3):419–432. doi: 10.1083/jcb.7.3.419

The Anatomy of Secretion in the Follicular Cells of the Thyroid Gland

I. The Fine Structure of the Gland in the Normal Rat

Steven L Wissig 1
PMCID: PMC2224840  PMID: 13845420

Abstract

The paper contains a description of the fine structure of the thyroid gland of the normal rat. The follicular colloid, a homogeneous substance of faintly granular texture, is bounded by cuboidal or low columnar epithelial cells. Numerous pleomorphic microvilli, often permeated by small vesicles extend from the apices of the epithelial cells into the colloid. Many small, membrane-limited vesicles lie in the superficial cytoplasmic layer just below the apical plasmalemma. The ergastoplasmic sacs of the follicular cells are dilated and contain a substance resembling colloid. They are of irregular outline, and the larger sacs tend to be located in the base of the cells. The Golgi apparatus lies in the vicinity of the nucleus and consists primarily of numerous small, membrane-bound droplets with a homogeneous content. Droplets, similar to the Golgi vesicles but larger, lie in the same vicinity and are tentatively identified as colloid droplets. The colloid droplets contain an extremely fine, dense particulate material. Other droplets with a denser, more heterogenous content are also present. Both the follicular cells and the perifollicular capillaries are bounded by a continuous basement membrane. The capillary endothelium is in certain regions extremely attenuated and is pierced by numerous patent pores, 450 A in diameter. The marked similarity between the presumptive colloid droplets and vesicles of the Golgi apparatus suggests that the droplets arise from this organelle. On morphological grounds alone no relation can be established between any of the organelles of the follicular cell and the process of colloid resorption.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENNETT H. S., LUFT J. H., HAMPTON J. C. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959 Feb;196(2):381–390. doi: 10.1152/ajplegacy.1959.196.2.381. [DOI] [PubMed] [Google Scholar]
  2. DEMPSEY E. W., PETERSON R. R. Electron microscopic observations on the thyroid glands of normal, hypophysectomized, cold-exposed and thiouracil-treated rats. Endocrinology. 1955 Jan;56(1):46–58. doi: 10.1210/endo-56-1-46. [DOI] [PubMed] [Google Scholar]
  3. DONIACH I., LOGOTHETOPOULOS J. H. Radioautography of inorganic iodide in the thyroid. J Endocrinol. 1955 Oct;13(1):65–69. doi: 10.1677/joe.0.0130065. [DOI] [PubMed] [Google Scholar]
  4. EKHOLM R., SJOSTRAND F. S. The ultrastructural organization of the mouse thyroid gland. J Ultrastruct Res. 1957 Dec;1(2):178–199. doi: 10.1016/s0022-5320(57)80006-9. [DOI] [PubMed] [Google Scholar]
  5. EKHOLM R. The ultrastructure of the blood capillaries in the mouse thyroid gland. Z Zellforsch Mikrosk Anat. 1957;46(2):139–146. doi: 10.1007/BF00383226. [DOI] [PubMed] [Google Scholar]
  6. FAWCETT D. W. Observations on the cytology and electron microscopy of hepatic cells. J Natl Cancer Inst. 1955 Apr;15(5 Suppl):1475–1503. [PubMed] [Google Scholar]
  7. GERSH I. Glycoproteins in the thyroid gland of rats. J Endocrinol. 1950 Jan;6(3):282-7, pl. doi: 10.1677/joe.0.0060282. [DOI] [PubMed] [Google Scholar]
  8. MONROE B. G. Electron microscopy of the thyroid. Anat Rec. 1953 Jul;116(3):345–361. doi: 10.1002/ar.1091160310. [DOI] [PubMed] [Google Scholar]
  9. MOORE D. H., RUSKA H. The fine structure of capillaries and small arteries. J Biophys Biochem Cytol. 1957 May 25;3(3):457–462. doi: 10.1083/jcb.3.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NADLER N. J., LEBLOND C. P. The site and rate of formation of thyroid hormones. Brookhaven Symp Biol. 1955 Feb;7:40-58; discussion, 58-60. [PubMed] [Google Scholar]
  11. PALADE G. E. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953 Jul;1(4):188–211. doi: 10.1177/1.4.188. [DOI] [PubMed] [Google Scholar]
  12. PALADE G. E. Intracisternal granules in the exocrine cells of the pancreas. J Biophys Biochem Cytol. 1956 Jul 25;2(4):417–422. doi: 10.1083/jcb.2.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PALADE G. E. Studies on the endoplasmic reticulum. II. Simple dispositions in cells in situ. J Biophys Biochem Cytol. 1955 Nov 25;1(6):567–582. doi: 10.1083/jcb.1.6.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PALAY S. L., KARLIN L. J. An electron microscopic study of the intestinal villus. I. The fasting animal. J Biophys Biochem Cytol. 1959 May 25;5(3):363–372. doi: 10.1083/jcb.5.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PALAY S. L., KARLIN L. J. An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J Biophys Biochem Cytol. 1959 May 25;5(3):373–384. doi: 10.1083/jcb.5.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PEACHEY L. D. Thin sections. I. A study of section thickness and physical distortion produced during microtomy. J Biophys Biochem Cytol. 1958 May 25;4(3):233–242. doi: 10.1083/jcb.4.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PEASE D. C. Fine structures of the kidney seen by electron microscopy. J Histochem Cytochem. 1955 Jul;3(4):295–308. doi: 10.1177/3.4.295. [DOI] [PubMed] [Google Scholar]
  19. RICHTER G. W. The cellular transformation of injected colloidal iron complexes into ferritin and hemosiderin in experimental animals; a study with the aid of electron microscopy. J Exp Med. 1959 Feb 1;109(2):197–216. doi: 10.1084/jem.109.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SIEKEVITZ P., PALADE G. E. A cyto-chemical study on the pancreas of the guinea pig. III. In vivo incorporation of leucine-1-C14 into the proteins of cell fractions. J Biophys Biochem Cytol. 1958 Sep 25;4(5):557–566. doi: 10.1083/jcb.4.5.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. II. Functional variations in the enzymatic activity of microsomes. J Biophys Biochem Cytol. 1958 May 25;4(3):309–318. doi: 10.1083/jcb.4.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SJOSTRAND F. S., HANZON V. Membrane structures of cytoplasm and mitochondria in exocrine cells of mouse pancreas as revealed by high resolution electron microscopy. Exp Cell Res. 1954 Nov;7(2):393–414. doi: 10.1016/s0014-4827(54)80086-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES