Abstract
This study was designed to answer the question: Is H3-thymidine uptake by nuclei of the mouse seminal vesicle evidence for DNA synthesis and mitosis, or does it signify some "metabolic" function of DNA unrelated to chromosome duplication? Mice were given an intraperitoneal injection of H3-thymidine. Six hours later Feulgen squashes of the seminal vesicle epithelium were made and covered with autoradiographic stripping film. The silver grains above labeled nuclei were counted, and the Feulgen dye contents of these same nuclei were determined photometrically after removal of the grains from the emulsion. Unlabeled nuclei were also measured. The dye contents of non-radioactive nuclei form a unimodal distribution, indicating that polyploidy is absent from this tissue. The radioactive nuclei fall into two groups. In the first, the average dye content is the same as that of the cold nuclei (2C). In the second, the values range from 2C to 4C. In the 2C to 4C group the grain count is proportional to the dye content, showing that incorporation is correlated with synthesis. The radioactive 2C nuclei arose by mitosis during the course of the experiment. This is shown by the following facts: (1) They frequently occur in pairs. (2) They average smaller than unlabeled 2C nuclei. (3) Their average grain count is approximately half that of the 4C nuclei. (4) Labeled division figures are found. (5) A mitotic rate estimated from the number of labeled 2C nuclei accords reasonably well with one based on the number of observed mitoses. Since the incorporation of thymidine accompanies DNA synthesis and precedes mitosis, there is no reason to postulate a special "metabolic" DNA in this tissue.
Full Text
The Full Text of this article is available as a PDF (728.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN J. M. The influence of hormones on cell division. I. Time-response of ear, seminal vesicle, coagulating gland and ventral prostate of castrate male mice to a single injection of estradiol benzoate. Exp Cell Res. 1956 Apr;10(2):523–532. doi: 10.1016/0014-4827(56)90024-6. [DOI] [PubMed] [Google Scholar]
- BARNUM C. P., JARDETZKY C. D., HALBERG F. Nucleic acid synthesis in regenerating liver. Tex Rep Biol Med. 1957;15(1):134–147. [PubMed] [Google Scholar]
- BARNUM C. P., JARDETZKY C. D., HALBERG F. Time relations among metabolic and morphologic 24-hour changes in mouse liver. Am J Physiol. 1958 Nov;195(2):301–310. doi: 10.1152/ajplegacy.1958.195.2.301. [DOI] [PubMed] [Google Scholar]
- CONGER A. D., FAIRCHILD L. M. A quick-freeze method for making smear slides permanent. Stain Technol. 1953 Nov;28(6):281–283. doi: 10.3109/10520295309105555. [DOI] [PubMed] [Google Scholar]
- DEELEY E. M., DAVIES H. G., CHAYEN J. The DNA content of cells in the root of Vicia faba. Exp Cell Res. 1957 Jun;12(3):582–591. doi: 10.1016/0014-4827(57)90174-x. [DOI] [PubMed] [Google Scholar]
- FICQ A., PAVAN C. Autoradiography of polytene chromosomes of Rhynchosciara angelae at different stages of larval development. Nature. 1957 Nov 9;180(4593):983–984. doi: 10.1038/180983a0. [DOI] [PubMed] [Google Scholar]
- HALBERG F., HOWARD R. B. 24 Hour periodicity and experimental medicine examples and interpretations. Postgrad Med. 1958 Oct;24(4):349–358. doi: 10.1080/00325481.1958.11692235. [DOI] [PubMed] [Google Scholar]
- HOWARD A., PELC S. R. A difference between spermatogonia and somatic tissues of mice in the incorporation of [8-14C]-adenine into deoxyribonucleic acid. Exp Cell Res. 1956 Aug;11(1):128–134. doi: 10.1016/0014-4827(56)90197-5. [DOI] [PubMed] [Google Scholar]
- Hughes W. L., Bond V. P., Brecher G., Cronkite E. P., Painter R. B., Quastler H., Sherman F. G. CELLULAR PROLIFERATION IN THE MOUSE AS REVEALED BY AUTORADIOGRAPHY WITH TRITIATED THYMIDINE. Proc Natl Acad Sci U S A. 1958 May;44(5):476–483. doi: 10.1073/pnas.44.5.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOENIG H. An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis. J Biophys Biochem Cytol. 1958 Nov 25;4(6):785–792. doi: 10.1083/jcb.4.6.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOENIG H. Uptake of adenine-8-C14 and orotic-6-C14 acid into nuclear DNA of non-dividing cells in the adult feline neuraxis. J Biophys Biochem Cytol. 1958 Sep 25;4(5):664–665. doi: 10.1083/jcb.4.5.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEBLOND C. P., MESSIER B., KOPRIWA B. Thymidine-H3 as a tool for the investigation of the renewal of cell populations. Lab Invest. 1959 Jan-Feb;8(1):296–308. [PubMed] [Google Scholar]
- MAZIA D., PLAUT W. The distribution of newly synthesized DNA in mitotic division. J Biophys Biochem Cytol. 1956 Sep 25;2(5):573–588. doi: 10.1083/jcb.2.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MESSIER B., LEBLOND C. P., SMART I. Presence of DNA synthesis and mitosis in the brain of young adult mice. Exp Cell Res. 1958 Feb;14(1):224–226. doi: 10.1016/0014-4827(58)90235-0. [DOI] [PubMed] [Google Scholar]
- MOSES M. J., TAYLOR J. H. Desoxypentose nucleic acid synthesis during microsporogenesis in Tradescantia. Exp Cell Res. 1955 Dec;9(3):474–488. doi: 10.1016/0014-4827(55)90077-x. [DOI] [PubMed] [Google Scholar]
- PELC S. R., GAHAN P. B. Incorporation of labelled thymidine in the seminal vesicle of the mouse. Nature. 1959 Jan 31;183(4657):335–336. doi: 10.1038/183335a0. [DOI] [PubMed] [Google Scholar]
- PELC S. R., GAHAN P. B. Incorporation of labelled thymidine in the seminal vesicle of the mouse. Nature. 1959 Jan 31;183(4657):335–336. doi: 10.1038/183335a0. [DOI] [PubMed] [Google Scholar]
- PELC S. R., LA COUR L. F. The incorporation of H3-thymidine in newly differentiated nuclei of roots of Vicia faba. Experientia. 1959 Apr 15;15(4):131–133. doi: 10.1007/BF02165521. [DOI] [PubMed] [Google Scholar]
- PELC S. R. Metabolic activity of DNA as shown by autoradiographs. Lab Invest. 1959 Jan-Feb;8(1):225–236. [PubMed] [Google Scholar]
- PELC S. R. Nuclear uptake of labelled adenine in the seminal vesicle of the mouse. Exp Cell Res. 1958 Apr;14(2):301–315. doi: 10.1016/0014-4827(58)90188-5. [DOI] [PubMed] [Google Scholar]
- PLAUT W., FIRKET H. Distribution of newly synthesized deoxyribonucleic acid in mitotic division. Nature. 1958 Aug 9;182(4632):399–400. [PubMed] [Google Scholar]
- QUASTLER H., SHERMAN F. G. Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res. 1959 Jun;17(3):420–438. doi: 10.1016/0014-4827(59)90063-1. [DOI] [PubMed] [Google Scholar]
- RASCH E., SWIFT H., KLEIN R. M. Nucleoprotein changes in plant tumor growth. J Biophys Biochem Cytol. 1959 Aug;6(1):11–34. doi: 10.1083/jcb.6.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REICHARD P., ESTBORN B. Utilization of desoxyribosides in the synthesis of polynucleotides. J Biol Chem. 1951 Feb;188(2):839–846. [PubMed] [Google Scholar]
- Rudkin G. T., Corlette S. L. DISPROPORTIONATE SYNTHESIS OF DNA IN A POLYTENE CHROMOSOME REGION. Proc Natl Acad Sci U S A. 1957 Nov 15;43(11):964–968. doi: 10.1073/pnas.43.11.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STICH H. F., NAYLOR J. M. Variation of desoxyribonucleic acid content of specific chromosome regions. Exp Cell Res. 1958 Apr;14(2):442–445. doi: 10.1016/0014-4827(58)90206-4. [DOI] [PubMed] [Google Scholar]
- SWIFT H. H. The desoxyribose nucleic acid content of animal nuclei. Physiol Zool. 1950 Jul;23(3):169–198. doi: 10.1086/physzool.23.3.30152074. [DOI] [PubMed] [Google Scholar]
- TAYLOR J. H., McMASTER R. D. Autoradiographic and microphotometric studies of desoxyribose nucleic acid during microgametogenesis in Lilium longiflorum. Chromosoma. 1954;6(6-7):489–521. doi: 10.1007/BF01259951. [DOI] [PubMed] [Google Scholar]
- Taylor J H. Sister Chromatid Exchanges in Tritium-Labeled Chromosomes. Genetics. 1958 May;43(3):515–529. doi: 10.1093/genetics/43.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]