Abstract
The following structures were observed in electron micrographs of the mouse spinal ganglion cells: Nissl bodies composed of both aggregated rough-type, largely oriented, membranes of the endoplasmic reticulum and discrete particles; short rodlike mitochondria with well-developed transverse, obliquely or longitudinally arranged cristae, and a relatively typical Golgi complex. The components of ultracentrifuged ganglion cells (400,000 times gravity for 20 minutes) are stratified, the layers appearing in the order of their decreasing density as follows: (1) A microsomal or ergastoplasmic layer which may be further divided into three sublayers without sharp boundaries, namely, a discrete particle layer, a layer of discrete particles and highly distorted membranes of the endoplasmic reticulum, and a layer composed of relatively intact, but stretched membranes of the endoplasmic reticulum and discrete particles. (2) Mitochondria constitute a relatively broad layer. They are sometimes stretched; however, they retain most of their fine structure. The stratified nucleus is found within the mitochondrial layer. (3) A relatively wide layer of tightly packed vesicles. (4) At the centripetal end, resting against the cell membrane, are a few lipid vacuoles. A comparison is made between the ultrastructure of the stratified layers in situ and those described by others in differentially ultracentrifuged homogenates.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON E., VAN BREEMEN V. L. Electron microscopic observations on spinal ganglion cells of Rana pipiens after injection of malononitrile. J Biophys Biochem Cytol. 1958 Jan 25;4(1):83–86. doi: 10.1083/jcb.4.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEAMS H. W. The effects of ultracentrifugal force on the cell with special reference to division. Ann N Y Acad Sci. 1951 Mar;51(8):1349–1364. doi: 10.1111/j.1749-6632.1951.tb30069.x. [DOI] [PubMed] [Google Scholar]
- BEAMS H. W., VAN BREEMEN V. L., NEWFANG D. M., EVANS T. C. A correlated study on spinal ganglion cells and associated nerve fibers with the light and electron microscopes. J Comp Neurol. 1952 Apr;96(2):249–281. doi: 10.1002/cne.900960204. [DOI] [PubMed] [Google Scholar]
- BERNHARD W., GAUTIER A., ROUILLER C. La notion de microsomes et le problème de la basophilie cytoplasmique; étude critique et expérimentale. Arch Anat Microsc Morphol Exp. 1954;43(3):236–275. [PubMed] [Google Scholar]
- DALTON A. J., KAHLER H., STRIEBICH M. J., LLOYD B. Finer structure of hepatic, intestinal and renal cells of the mouse as revealed by the electron microscope. J Natl Cancer Inst. 1950 Oct;11(2):439–461. [PubMed] [Google Scholar]
- DEITCH A. D., MURRAY M. R. The Nissl substance of living and fixed spinal ganglion cells. I. A phase contrast study. J Biophys Biochem Cytol. 1956 Jul 25;2(4):433–444. doi: 10.1083/jcb.2.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANZON V., HERMODSSON L. H., TOSCHI G. Ultrastructural organization of cytoplasmic nucleoprotein in the exocrine pancreas cells. J Ultrastruct Res. 1959 Dec;3:216–227. doi: 10.1016/s0022-5320(59)90016-4. [DOI] [PubMed] [Google Scholar]
- HESS A. The fine structure of young and old spinal ganglia. Anat Rec. 1955 Dec;123(4):399–423. doi: 10.1002/ar.1091230403. [DOI] [PubMed] [Google Scholar]
- HOLTER H. Localization of enzymes in cytoplasm. Adv Enzymol Relat Subj Biochem. 1952;13:1–20. doi: 10.1002/9780470122587.ch1. [DOI] [PubMed] [Google Scholar]
- KOENIG H. Cytoplasmic nucleoprotein of living nerve cells grown in vitro. J Histochem Cytochem. 1954 Sep;2(5):334–340. doi: 10.1177/2.5.334. [DOI] [PubMed] [Google Scholar]
- LATTA H., HARTMANN J. F. Use of a glass edge in thin sectioning for electron microscopy. Proc Soc Exp Biol Med. 1950 Jun;74(2):436–439. doi: 10.3181/00379727-74-17931. [DOI] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEASE D. C., BAKER R. F. Electron microscopy of nervous tissue. Anat Rec. 1951 Aug;110(4):505–529. doi: 10.1002/ar.1091100405. [DOI] [PubMed] [Google Scholar]
- PETRUSHKA E., GIUDITTA A. Electron microscopy of two subcellular fractions isolated from cerebral cortex homogenate. J Biophys Biochem Cytol. 1959 Aug;6(1):129–132. doi: 10.1083/jcb.6.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ R. L., MAYNARD E. A., PEASE D. C. Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Am J Anat. 1957 May;100(3):369–407. doi: 10.1002/aja.1001000305. [DOI] [PubMed] [Google Scholar]
- SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. IV. Chemical and metabolic investigation of the ribonucleoprotein particles. J Biophys Biochem Cytol. 1959 Jan 25;5(1):1–10. doi: 10.1083/jcb.5.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SJOSTRAND F. S., BAKER R. F. Fixation by freezing-drying for electron microscopy of tissue cells. J Ultrastruct Res. 1958 Apr;1(3):239–246. doi: 10.1016/s0022-5320(58)80005-2. [DOI] [PubMed] [Google Scholar]
- SMITH S. W. Reticular and areticular Nissl bodies in sympathetic neurons of a lizard. J Biophys Biochem Cytol. 1959 Aug;6(1):77–84. doi: 10.1083/jcb.6.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]