Abstract
Fowler's bacillus is one of several organisms which form a non-viable inclusion or parasporal body during the process of sporulation. This body is globular and may be as large as or larger than the spore. Its position in the cell is not random; the spore is terminal and the body paracentral, lying between the spore and the remaining vegetative cell chromatin bodies. On completion of sporulation both spore and body are contained within an exosporium. The sequence in the development of the cell structures was followed in ultrathin sections of material fixed in permanganate. When sporulation is well advanced the body begins to grow from a single crystal, then presumably as a result of some disorientation in the growth process it develops as a multicrystalline body with the lattices orientated at different angles. When the body approximates the spore in size, a lamella coat is formed and an exosporium develops which eventually encircles the body and the spore. Other lamella systems microscopically similar to those surrounding the parasporal body develop free in the cytoplasm outside the exosporium. In both of these systems the number of lamellae is variable. The spore coat of Fowler's bacillus, consisting of an outer lamella layer and an inner unresolved amorphous layer has been found microscopically identical to the spore coat of B. cereus. In both organisms the lamella layer of the spore coat consists, in contrast to the other lamella systems, of a regular number of lamellae. Physiological tests would indicate that Fowler's bacillus is a variety of B. cereus.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- FITZ-JAMES P. C., YOUNG I. E. Comparison of species and yarieties of the genus Bacillus. Structure and nucleic acid content of spores. J Bacteriol. 1959 Dec;78:743–754. doi: 10.1128/jb.78.6.743-754.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLAUERT A. M., HOPWOOD D. A. A membranous component of the cytoplasm in Streptomyces coelicolor. J Biophys Biochem Cytol. 1959 Dec;6:515–516. doi: 10.1083/jcb.6.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANNAY C. L. Crystalline inclusions in aerobic spore-forming bacteria. Nature. 1953 Nov 28;172(4387):1004–1004. doi: 10.1038/1721004a0. [DOI] [PubMed] [Google Scholar]
- HANNAY C. L., FITZ-JAMES P. The protein crystals of Bacillus thuringiensis Berliner. Can J Microbiol. 1955 Oct;1(8):694–710. doi: 10.1139/m55-083. [DOI] [PubMed] [Google Scholar]
- HANNAY C. L. The parasporal body of Bacillus laterosporus Laubach. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1001–1010. doi: 10.1083/jcb.3.6.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
- TOKUYASU K., YAMADA E. Fine structure of Bacillus subtilis. I. Fixation. J Biophys Biochem Cytol. 1959 Jan 25;5(1):123–128. doi: 10.1083/jcb.5.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TOKUYASU K., YAMADA E. Fine structure of Bacillus subtilis. II. Sporulation progress. J Biophys Biochem Cytol. 1959 Jan 25;5(1):129–134. doi: 10.1083/jcb.5.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]