Abstract
A specially designed high-speed blendor and glass beads have been used to disintegrate yeast cells. The method enables large quantities of cells to be fragmented quickly at low temperature, and cell-free mitochondrial particles to be prepared in high yield. The particles are isolated in a sucrose-Tris-EDTA medium and extensively refractionated in the same medium. The success of the fractionation is dependent upon the presence of the Tris buffer, as the latter prevents the aggregation of the particulate material. Two morphologically and enzymatically different particle types have been obtained: a heavy fraction corresponding to mitochondria in size and internal organization, and a light fraction consisting of vesicular, single-membrane particles of a smaller size. The light particles oxidize DPNH and succinate, but do not oxidize pyruvate-malate, and lack the capacity for phosphorylation. The heavy particles oxidize pyruvate-malate as well as the citric acid cycle intermediates, although their α-ketoglutaric dehydrogenase activity is low. Oxidation by the heavy particles is coupled to phosphorylation, and P/O ratios of about 1.5 have been obtained. Lactic acid dehydrogenase is also present in the heavy fraction, and lactate is oxidized with a P/O ratio of about 0.7.
Full Text
The Full Text of this article is available as a PDF (765.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AGAR H. D., DOUGLAS H. C. Studies on the cytological structure of yeast: electron microscopy of thin sections. J Bacteriol. 1957 Mar;73(3):365–375. doi: 10.1128/jb.73.3.365-375.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- APPLEBY C. A., MORTON R. K. Lactic dehydrogenase and cytochrome b2 of baker's yeast; purification and crystallization. Biochem J. 1959 Mar;71(3):492–499. doi: 10.1042/bj0710492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B. Phosphorylation efficiency of the intact cell. II. Crossover phenomena in bakers' yeast. J Biol Chem. 1959 Nov;234:3036–3040. [PubMed] [Google Scholar]
- EPHRUSSI B., HOTTINGUER H. On an unstable cell state in yeast. Cold Spring Harb Symp Quant Biol. 1951;16:75–85. doi: 10.1101/sqb.1951.016.01.007. [DOI] [PubMed] [Google Scholar]
- GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
- HUNTER F. E., Jr, LEVY J. F., FINK J., SCHUTZ B., GUERRA F., HURWITZ A. Studies on the mechanism by which anaerobiosis prevents swelling of mitochondria in vitro: effect of electron transport chain inhibitors. J Biol Chem. 1959 Aug;234(8):2176–2186. [PubMed] [Google Scholar]
- KOEPSELL H. J., SHARPE E. S. Micro-determination of pyruvic and alpha-keto-glutaric acids. Arch Biochem Biophys. 1952 Jul;38:443–449. doi: 10.1016/0003-9861(52)90050-7. [DOI] [PubMed] [Google Scholar]
- LEHNINGER A. L. Oxidative phosphorylation. Harvey Lect. 1953;49:176–215. [PubMed] [Google Scholar]
- LESTER R. L., HATEFI Y. Studies on the mechanism of oxidative phosphorylation. IV. Pyridine nucleotide binding and its relation to activity in heart mitochondria. Biochim Biophys Acta. 1958 Jul;29(1):103–112. doi: 10.1016/0006-3002(58)90150-1. [DOI] [PubMed] [Google Scholar]
- LESTER R. L., ZIEGLER D. M., GREEN D. E. Studies on the mechanism of oxidative phosphorylation. II. Role of bound pyridine nucleotide in phosphorylation. Biochim Biophys Acta. 1957 Apr;24(1):155–160. doi: 10.1016/0006-3002(57)90158-0. [DOI] [PubMed] [Google Scholar]
- LINNANE A. W., STILL J. L. The isolation of respiring mitochondria from Baker's yeast. Arch Biochem Biophys. 1955 Dec;59(2):383–392. doi: 10.1016/0003-9861(55)90505-1. [DOI] [PubMed] [Google Scholar]
- NOSSAL P. M. A mechanical cell disintegrator. Aust J Exp Biol Med Sci. 1953 Dec;31(6):583–589. doi: 10.1038/icb.1953.64. [DOI] [PubMed] [Google Scholar]
- NOSSAL P. M. Distribution of enzymes in cell-free yeast extracts. Biochem J. 1954 May;57(1):62–69. doi: 10.1042/bj0570062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SLATER E. C., CLELAND K. W. Stabilization of oxidative phosphorylation in heart-muscle sarcosomes. Nature. 1952 Jul 19;170(4316):118–119. doi: 10.1038/170118b0. [DOI] [PubMed] [Google Scholar]
- UTTER M. F., KEECH D. B., NOSSAL P. M. Oxidative phosphorylation by subcellular particles from yeast. Biochem J. 1958 Mar;68(3):431–440. doi: 10.1042/bj0680431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VANDERWINKEL E., DE DEKEN R. H., WIAME J. M. Isolation of cytoplasmic structures from yeast. Exp Cell Res. 1958 Oct;15(2):418–421. doi: 10.1016/0014-4827(58)90044-2. [DOI] [PubMed] [Google Scholar]
- VITOLS E., NORTH R. J., LINNANE A. W. Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell. J Biophys Biochem Cytol. 1961 Mar;9:689–699. doi: 10.1083/jcb.9.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZIEGLER D. M., LINNANE A. W., GREEN D. E., DASS C. M., RIS H. Studies on the electron transport system. XI. Correlation of the morphology and enzymic properties of mitochondrial and sub-mitochondrial particles. Biochim Biophys Acta. 1958 Jun;28(3):524–538. doi: 10.1016/0006-3002(58)90515-8. [DOI] [PubMed] [Google Scholar]