Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1961 Mar 1;9(3):639–651. doi: 10.1083/jcb.9.3.639

MORPHOLOGICAL AND CHEMICAL STUDIES OF COLLAGEN FORMATION

I. The Fine Structure of Guinea Pig Granulomata

J A Chapman 1
PMCID: PMC2225033  PMID: 13692398

Abstract

This paper describes electron microscopic studies of developing connective tissue in granulomata induced by the subcutaneous injection of carrageenin into guinea pigs. Seven days after injection the granulomata contained many fibroblasts and exhibited rapid production of collagen. The fibroblasts were characterised by an extensively developed endoplasmic reticulum and showed numbers of fine, unstriated filaments in the outer regions of the cytoplasm. The filaments, about 50 A in diameter, tended to lie parallel to and closely adjacent to the cell boundary. The cytoplasmic membrane was frequently ill defined or disrupted, particularly bordering regions in which filaments occurred. In longitudinal sections of extended cell processes, filaments were abundant and, in some instances, the cytoplasmic membrane was barely detectable. In the extracellular space striated collagen fibrils were usually accompanied by filaments, 50 to 100 A in diameter, and these often exhibited the characteristic periodicity of collagen, particularly after intense electron bombardment. Much cellular debris was present in the extracellular space. These observations have led to the suggestion that connective tissue precursors are released from fibroblasts by the disintegration or dissolution of the cytoplasmic membrane and the shedding of cytoplasmic material, as in the apocrine gland cells. In some instances this release may take the form of the elongation from the cell of extended processes; disintegration of the cytoplasmic membrane surrounding these processes then leaves the contents in the extracellular phase.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FERRIS W., WEISS P. The basement lamelia of amphibian skin; its reconstruction after wounding. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):275–282. doi: 10.1083/jcb.2.4.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GLAUERT A. M., GLAUERT R. H. Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol. 1958 Mar 25;4(2):191–194. doi: 10.1083/jcb.4.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gross J., Highberger J. H., Schmitt F. O. EXTRACTION OF COLLAGEN FROM CONNECTIVE TISSUE BY NEUTRAL SALT SOLUTIONS. Proc Natl Acad Sci U S A. 1955 Jan 15;41(1):1–7. doi: 10.1073/pnas.41.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HUXLEY H. E. Some aspects of staining of tissue for sectioning. J R Microsc Soc. 1958 Mar-Jun;78:30–32. doi: 10.1111/j.1365-2818.1958.tb02034.x. [DOI] [PubMed] [Google Scholar]
  5. JACKSON D. S. Connective tissue growth stimulated by carrageenin. I. The formation and removal of collagen. Biochem J. 1957 Feb;65(2):277–284. doi: 10.1042/bj0650277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. JACKSON S. F. The morphogenesis of avian tendon. Proc R Soc Lond B Biol Sci. 1956 Mar 13;144(917):556–572. doi: 10.1098/rspb.1956.0011. [DOI] [PubMed] [Google Scholar]
  7. KARRER H. E. The fine structure of connective tissue in the tunica propria of bronchioles. J Ultrastruct Res. 1958 Nov;2(1):96–121. doi: 10.1016/s0022-5320(58)90049-2. [DOI] [PubMed] [Google Scholar]
  8. LUFT J. H. Permanganate; a new fixative for electron microscopy. J Biophys Biochem Cytol. 1956 Nov 25;2(6):799–802. doi: 10.1083/jcb.2.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PORTER K. R., PAPPAS G. D. Collagen formation by fibroblasts of the chick embryo dermis. J Biophys Biochem Cytol. 1959 Jan 25;5(1):153–166. doi: 10.1083/jcb.5.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SALPETER M. M., SINGER M. The fine structure of the adepidermal reticulum in the basal membrane of the skin of the newt, Triturus. J Biophys Biochem Cytol. 1959 Aug;6(1):35–40. doi: 10.1083/jcb.6.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. VAN ROBERTSON W. B., SCHWARTZ B. Ascorbic acid and the formation of collagen. J Biol Chem. 1953 Apr;201(2):689–696. [PubMed] [Google Scholar]
  13. WASSERMANN F. Fibrillogenesis in the regenerating rat tendon with special reference to growth and composition of the collagenous fibril. Am J Anat. 1954 May;94(3):399–437. doi: 10.1002/aja.1000940304. [DOI] [PubMed] [Google Scholar]
  14. YARDLEY J. H., HEATON M. W., GAINES L. M., Jr, SHULMAN L. E. Collagen formation by fibroblasts: preliminary electron microscopic observations using thin sections of tissue cultures. Bull Johns Hopkins Hosp. 1960 Jun;106:381–393. [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES