Skip to main content
The Journal of Biophysical and Biochemical Cytology logoLink to The Journal of Biophysical and Biochemical Cytology
. 1961 Aug 1;10(4):201–218. doi: 10.1083/jcb.10.4.201

THE SARCOTUBULAR SYSTEM OF FROG SKELETAL MUSCLE

A Morphological and Biochemical Study

U Muscatello 1, Ebba Andersson-Cedergren 1, G F Azzone 1, Alexandra von der Decken 1
PMCID: PMC2225095  PMID: 13727069

Abstract

In the frog skeletal muscle cell a well defined and highly organized system of tubular elements is located in the sarcoplasm between the myofibrils. The sarcoplasmic component is called the sarcotubular system. By means of differential centrifugation it has been possible to isolate from the frog muscle homogenate a fraction composed of small vesicles, tubules, and particles. This fraction is without cytochrome oxidase activity, which is localized in the mitochondrial membranes. This indicates that the structural components of this fraction do not derive from the mitochondrial fragmentation, but probably from the sarcotubular system. This fraction, called sarcotubular fraction, has a Mg++-stimulated ATPase activity which differs from that of muscle mitochondria in that it is 3 to 4 times higher on the protein basis as compared with the mitochondrial ATPase, and is inhibited by Ca++ and by deoxycholate like the Kielley and Meyerhof ATPase. We therefore conclude that the "granules" of the Kielley and Meyerhof ATPase, which were shown to have a relaxing effect, are fragments of the sarcotubular system. The isolated sarcotubular fraction has a high RNA content and demonstrable activity in incorporating labeled amino acids, even in the absence of added supernatant.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AZZONE G. F., CARAFOLI E., MUSCATELLO U. Biochemical properties of skeletal muscle mitochondria. II. The ATPase activity and the albumin effect. Exp Cell Res. 1960 Dec;21:456–467. doi: 10.1016/0014-4827(60)90279-2. [DOI] [PubMed] [Google Scholar]
  2. AZZONE G. F., EEG-OLOFSSON O., ERNSTER L., LUFT R., SZABOLCSI G. Studies on isolated human skeletal muscle mitochondria. Exp Cell Res. 1961 Jan;22:415–436. doi: 10.1016/0014-4827(61)90119-7. [DOI] [PubMed] [Google Scholar]
  3. BENDALL J. R. Muscle-relaxing factors. Nature. 1958 Apr 26;181(4617):1188–1190. doi: 10.1038/1811188a0. [DOI] [PubMed] [Google Scholar]
  4. BENNETT H. S., PORTER K. R. An electron microscope study of sectioned breast muscle of the domestic fowl. Am J Anat. 1953 Jul;93(1):61–105. doi: 10.1002/aja.1000930104. [DOI] [PubMed] [Google Scholar]
  5. BRIGGS F. N., KALDOR G., GERGELY J. Participation of a dialyzable cofactor in the relaxing factor system of muscle. I. Studies with single glycerinated fibres. Biochim Biophys Acta. 1959 Jul;34:211–218. doi: 10.1016/0006-3002(59)90249-5. [DOI] [PubMed] [Google Scholar]
  6. CHAPPELL J. B., PERRY S. V. Biochemical and osmotic properties of skeletal muscle mitochondria. Nature. 1954 Jun 5;173(4414):1094–1095. doi: 10.1038/1731094a0. [DOI] [PubMed] [Google Scholar]
  7. CLELAND K. W., SLATER E. C. Respiratory granules of heart muscle. Biochem J. 1953 Mar;53(4):547–556. doi: 10.1042/bj0530547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GLAUERT A. M., GLAUERT R. H. Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol. 1958 Mar 25;4(2):191–194. doi: 10.1083/jcb.4.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LITTLEFIELD J. W., KELLER E. B., GROSS J., ZAMECNIK P. C. Studies on cytoplasmic ribonucleoprotein particles from the liver of the rat. J Biol Chem. 1955 Nov;217(1):111–123. [PubMed] [Google Scholar]
  10. MAKINOSE M., HASSELBACH W. [The dependence of granule effect on the nature of the actomyosin system and Gergely's co-factor]. Biochim Biophys Acta. 1960 Sep 23;43:239–248. doi: 10.1016/0006-3002(60)90434-0. [DOI] [PubMed] [Google Scholar]
  11. MARSH B. B. A factor modifying muscle fibre synaeresis. Nature. 1951 Jun 30;167(4261):1065–1066. doi: 10.1038/1671065a0. [DOI] [PubMed] [Google Scholar]
  12. MOULE Y., ROUILLER C., CHAUVEAU J. A biochemical and morphological study of rat liver microsomes. J Biophys Biochem Cytol. 1960 Jun;7:547–558. doi: 10.1083/jcb.7.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PORTZEHL H. Bewirkt das System Phosphokreatin-Phosphokinase die Erschlaffung des lebenden Muskels? Biochim Biophys Acta. 1957 Jun;24(3):474–482. doi: 10.1016/0006-3002(57)90235-4. [DOI] [PubMed] [Google Scholar]
  16. SACKTOR B. Investigations on the mitochondria of the house fly, Musca domestica L. I. Adenosinetriphosphatases. J Gen Physiol. 1953 Jan;36(3):371–387. doi: 10.1085/jgp.36.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SACKTOR B. Investigations on the mitochondria of the housefly, Musca domestica L. III. Requirements for oxidative phosphorylation. J Gen Physiol. 1954 Jan 20;37(3):343–359. doi: 10.1085/jgp.37.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. VON DER DECKEN A., HULTIN T. The activity of microsomes from regenerating rat liver in amino acid incoporating systems. Exp Cell Res. 1958 Feb;14(1):88–96. doi: 10.1016/0014-4827(58)90216-7. [DOI] [PubMed] [Google Scholar]
  19. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. von der DECKEN, HULTIN T. Activity of rat-liver enzymes in the transfer of s-RNA-bound amino acids to protein by ribonucleoprotein particles. Biochim Biophys Acta. 1960 Dec 4;45:139–148. doi: 10.1016/0006-3002(60)91434-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Biophysical and Biochemical Cytology are provided here courtesy of The Rockefeller University Press

RESOURCES