Abstract
The development of giant cells induced by the nematode Meloidogyne in tomato roots has been followed under controlled growth conditions and the ultrastructure and histochemistry of these structures have been examined. Entry of the nematode larvae into the roots took place within 24 hours; giant cell formation started on the 4th day and involved breakdown of the cell walls accompanied by thickening of a surrounding giant cell wall and an increase in density and area of the cytoplasm. The nuclei increased in number by simultaneous mitosis throughout a single giant cell. The peak of cytoplasmic density was reached after moulting and during egg production. The rate of protein synthesis in the giant cell is correlated with the rate of growth of the nematode. The giant cell wall is a thick, irregularly surfaced structure which contains all the normal polysaccharide components of a cell wall. The cytoplasm is rich in protein and RNA and contains mitochondria, proplastids, Golgi bodies, and a dense endoplasmic reticulum. The nuclei are large and irregular in shape and contain large nucleoli and a number of Feulgen-positive bodies scattered irregularly along the nuclear envelope. The nucleolus contains RNA and fat as well as Feulgen-positive granules which are revealed after treatment with ribonuclease. It consists of a dense outer cortex surrounding a much lighter central core and is connected at times with the Feulgen-positive bodies in the nucleus. Speculation is provided on the role of these bodies in cytoplasmic protein synthesis.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON E., BEAMS H. W. Evidence from electron micrographs for the passage of material through pores of the nuclear membrane. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):439–444. doi: 10.1083/jcb.2.4.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERNSTEIN M. H. Iron as a stain for nucleic acids in electron microscopy. J Biophys Biochem Cytol. 1956 Sep 25;2(5):633–634. doi: 10.1083/jcb.2.5.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRACHET J. Ribonucleic acids and the synthesis of cellular proteins. Nature. 1960 Apr 16;186:194–199. doi: 10.1038/186194a0. [DOI] [PubMed] [Google Scholar]
- EINARSON L. On the theory of gallocyanin-chromalum staining and its application for quantitative estimation of basophilia; a selective staining of exquisite progressivity. Acta Pathol Microbiol Scand. 1951;28(1):82–102. doi: 10.1111/j.1699-0463.1951.tb05005.x. [DOI] [PubMed] [Google Scholar]
- ERICKSON R. O., SAX K. B., OGUR M. Perchloric acid in the cytochemistry of pentose nucleic acid. Science. 1949 Nov 4;110(2862):472–illust. doi: 10.1126/science.110.2862.472. [DOI] [PubMed] [Google Scholar]
- FEINENDEGEN L. E., BOND V. P., SHREEVE W. W., PAINTER R. B. RNA and DNA metabolism in human tissue culture cells studied with tritiated cytidine. Exp Cell Res. 1960 Apr;19:443–459. doi: 10.1016/0014-4827(60)90054-9. [DOI] [PubMed] [Google Scholar]
- GAY H. Chromosome-nuclear membrane-cytoplasmic interrelations in Drosophila. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):407–414. [PMC free article] [PubMed] [Google Scholar]
- LAFONTAINE J. G. Structure and mode of formation of the nucleolus in meristematic cells of Vicia faba and Allium cepa. J Biophys Biochem Cytol. 1958 Nov 25;4(6):777–784. doi: 10.1083/jcb.4.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOLLENHAUER H. H. Permanganate fixation of plant cells. J Biophys Biochem Cytol. 1959 Dec;6:431–436. doi: 10.1083/jcb.6.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOSES M. J. Studies on nuclei using correlated cytochemical, light, and electron microscope techniques. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):397–406. doi: 10.1083/jcb.2.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEACHEY L. D. Thin sections. I. A study of section thickness and physical distortion produced during microtomy. J Biophys Biochem Cytol. 1958 May 25;4(3):233–242. doi: 10.1083/jcb.4.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YASUZUMI G., SAWADA T., SUGIHARA R., KIRIYAMA M., SUGIOKA M. Electron microscope researches on the ultrastructure of nucleoli in animal tissues. Z Zellforsch Mikrosk Anat. 1958;48(1):10–23. doi: 10.1007/BF00496710. [DOI] [PubMed] [Google Scholar]
- ZALOKAR M. Sites of protein and ribonucleic acid synthesis in the cell. Exp Cell Res. 1960 Apr;19:559–576. doi: 10.1016/0014-4827(60)90064-1. [DOI] [PubMed] [Google Scholar]