Abstract
The penetration of 14C-labeled erythritol, mannitol, and sucrose through the axolemma was determined in medium sized paired axons, one at rest and the other stimulated 25 times per sec. The resting permeabilities, in 10-7 cm/sec, are erythritol, 2.9 ± 0.3 (mean ± SEM); mannitol, 2.3 ± 0.4; and sucrose 0.9 ± 0.1. In the stimulated axons they are: erythritol, 5.2 ± 0.3; mannitol, 4.0 ± 0.5; and sucrose, 1.8 ± 0.3. Thus, the calculated permeabilities during activity (1 msec per impulse), in the same units, are: 100, 75, and 38, respectively. These changes in permeability are reversible. The effects of external potassium and sodium concentrations on erythritol penetration were also studied. At rest, erythritol penetration is independent of potassium and sodium concentrations. In the stimulated axons, erythritol penetration decreases when the extracellular sodium is diminished. Sodium influx (not the efflux) decreases during rest and activity when the extracellular sodium is diminished. The diminution during activity of erythritol and sodium entries in low sodium solutions may be related to a decrease of a drag effect of sodium ions on the nonelectrolyte molecules or to independent effects of the sodium concentration on sodium influx and the nonelectrolyte pathways. The axolemma discriminates among erythritol, mannitol, sucrose, and the different ionic species during rest and activity.
Full Text
The Full Text of this article is available as a PDF (1,007.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRINLEY F. J., Jr, MULLINS L. J. ION FLUXES AND TRANSFERENCE NUMBER IN SQUID AXONS. J Neurophysiol. 1965 May;28:526–544. doi: 10.1152/jn.1965.28.3.526. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D., LEWIS P. R. The sodium and potassium content of cephalopod nerve fibers. J Physiol. 1951 Jun;114(1-2):151–182. doi: 10.1113/jphysiol.1951.sp004609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D. The ionic movements during nervous activity. J Physiol. 1951 Jun;114(1-2):119–150. doi: 10.1113/jphysiol.1951.sp004608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M., BERMAN M. D. Kinetics of ion movement in the squid giant axon. J Gen Physiol. 1955 Nov 20;39(2):279–300. doi: 10.1085/jgp.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VILLEGAS R., BARNOLA F. V. Characterization of the resting axolemma in the giant axon of the squid. J Gen Physiol. 1961 May;44:963–977. doi: 10.1085/jgp.44.5.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VILLEGAS R., BARNOLA F. V. Equivalent pore radius in the axolemma of the giant axon of the squid. Nature. 1960 Nov 26;188:762–763. doi: 10.1038/188762b0. [DOI] [PubMed] [Google Scholar]
- VILLEGAS R., VILLEGAS L., GIMENEZ M., VILLEGAS G. M. Schwann cell and axon electrical potential differences. Squid nerve structure and excitable membrane location. J Gen Physiol. 1963 May;46:1047–1064. doi: 10.1085/jgp.46.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]