Abstract
In isolated bundles of external intercostal muscle from normal goats and goats with hereditary myotonia the following were determined: concentrations and unidirectional fluxes of Na+, K+, and Cl-, extracellular volume, water content, fiber geometry, and core-conductor constants. No significant difference between the two groups of preparations was found with respect to distribution of fiber size, intracellular concentrations of Na+ or Cl-, fiber water, resting membrane potential, or overshoot of action potential. The intracellular Cl- concentration in both groups of preparations was 4 to 7 times that expected if Cl- were distributed passively between intracellular and extracellular water. The membrane permeability to K (P K) calculated from efflux data was (a) at 38°C, 0.365 x 10-6 cm sec-1 for normal and 0.492 x 10-6 for myotonic muscle, and (b) at 25°C, 0.219 x 10-6 for normal and 0.199 x 10-6 for myotonic muscle. From Cl- washout curves of normal muscle usually only three exponential functions could be extracted, but in every experiment with myotonic muscle there was an additional, intermediate component. From these data PPcl could be calculated; it was 0.413 x 10-6 cm sec-1 for myotonic fibers and was ⩾ 0.815 x 10-6 cm sec-1 for normal fibers. The resting membrane resistance of myotonic fibers was 4 to 6 times greater than that of normal fibers.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADRIAN R. H. Internal chloride concentration and chloride efflux of frog muscle. J Physiol. 1961 May;156:623–632. doi: 10.1113/jphysiol.1961.sp006698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ADRIAN R. H. Movement of inorganic ions across the membrane of striated muscle. Circulation. 1962 Nov;26:1214–1223. doi: 10.1161/01.cir.26.5.1214. [DOI] [PubMed] [Google Scholar]
- ADRIAN R. H. Potassium chloride movement and the membrane potential of frog muscle. J Physiol. 1960 Apr;151:154–185. [PMC free article] [PubMed] [Google Scholar]
- BARR L., MALVIN R. L. ESTIMATION OF EXTRACELLULAR SPACES OF SMOOTH MUSCLE USING DIFFERENT-SIZED MOLECULES. Am J Physiol. 1965 May;208:1042–1045. doi: 10.1152/ajplegacy.1965.208.5.1042. [DOI] [PubMed] [Google Scholar]
- BOHR D. F. ELECTROLYTES AND SMOOTH MUSCLE CONTRACTION. Pharmacol Rev. 1964 Mar;16:85–127. [PubMed] [Google Scholar]
- CREESE R., DILLON J. B., MARSHALL J., SABAWALA P. B., SCHNEIDER D. J., TAYLOR D. B., ZINN D. E. The effect of neuromuscular blocking agents on isolated human intercostal muscles. J Pharmacol Exp Ther. 1957 Apr;119(4):485–494. [PubMed] [Google Scholar]
- CREESE R. Measurement of cation fluxes in rat diaphragm. Proc R Soc Lond B Biol Sci. 1954 Sep 27;142(909):497–513. doi: 10.1098/rspb.1954.0039. [DOI] [PubMed] [Google Scholar]
- DOWBEN R. M., ZUCKERMAN L., GORDON P., SNIDERMAN S. P. EFFECTS OF STEROIDS ON THE COURSE OF HEREDITARY MUSCULAR DYSTROPHY IN MICE. Am J Physiol. 1964 May;206:1049–1056. doi: 10.1152/ajplegacy.1964.206.5.1049. [DOI] [PubMed] [Google Scholar]
- GOODFORD P. J. CHLORIDE CONTENT AND 36CL UPTAKE IN THE SMOOTH MUSCLE OF THE GUINEA-PIG TAENIA COLI. J Physiol. 1964 Mar;170:227–237. doi: 10.1113/jphysiol.1964.sp007326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROSSMAN A., FURCHGOTT R. F. THE EFFECTS OF EXTERNAL CALCIUM CONCENTRATION ON THE DISTRIBUTION AND EXCHANGE OF CALCIUM IN RESTING AND BEATING GUINEA-PIG AURICLES. J Pharmacol Exp Ther. 1964 Jan;143:107–119. [PubMed] [Google Scholar]
- GROSSMAN A., FURCHGOTT R. F. THE EFFECTS OF FREQUENCY OF STIMULATION AND CALCIUM CONCENTRATION ON CA45 EXCHANGE AND CONTRACTILITY ON THE ISOLATED GUINEA-PIG AURICLE. J Pharmacol Exp Ther. 1964 Jan;143:120–130. [PubMed] [Google Scholar]
- HARRIS E. J. THE CHLORIDE PERMEABILITY OF FROG SARTORIUS. J Physiol. 1965 Jan;176:123–135. doi: 10.1113/jphysiol.1965.sp007539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEGYELI A., SZENT GYORGYI A. Water and myotonia in goats. Science. 1961 Mar 31;133(3457):1011–1011. doi: 10.1126/science.133.3457.1011. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUBBARD S. J. The electrical constants and the component conductances of frog skeletal muscle after denervation. J Physiol. 1963 Mar;165:443–456. doi: 10.1113/jphysiol.1963.sp007069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. The chloride conductance of frog skeletal muscle. J Physiol. 1960 Apr;151:89–102. [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D. CHLORIDE IN THE SQUID GIANT AXON. J Physiol. 1963 Dec;169:690–705. doi: 10.1113/jphysiol.1963.sp007289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D. The ionic fluxes in frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359–382. doi: 10.1098/rspb.1954.0030. [DOI] [PubMed] [Google Scholar]
- KIMIZUKA H., KOKETSU K. CHANGES IN THE MEMBRANE PERMEABILITY OF FROG'S SARTORIUS MUSCLE FIBERS IN CA-FREE EDTA SOLUTION. J Gen Physiol. 1963 Nov;47:379–392. doi: 10.1085/jgp.47.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLAUS W., LUELLMANN H., MUSCHOLL E. [Potassium flux of normal and denervated rat diaphragm]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:761–775. [PubMed] [Google Scholar]
- LIPICKY R. J., HERTZ L., SHANES A. M. CA45 TRANSFER AND ACETYLCHOLINE RELEASE IN THE RABBIT SUPERIOR CERVICAL GANGLION. J Cell Physiol. 1963 Dec;62:233–242. doi: 10.1002/jcp.1030620302. [DOI] [PubMed] [Google Scholar]
- McINTYRE A. R., BENNETT A. L., BRODKEY J. S. Muscle dystrophy in mice of the Bar Harbor strain; an electromyographic comparison with dystrophia myotonica in man. AMA Arch Neurol Psychiatry. 1959 Jun;81(6):678–683. doi: 10.1001/archneurpsyc.1959.02340180012002. [DOI] [PubMed] [Google Scholar]
- NORRIS F. H., Jr Unstable membrane potential in human myotonic muscle. Electroencephalogr Clin Neurophysiol. 1962 Apr;14:197–201. doi: 10.1016/0013-4694(62)90029-9. [DOI] [PubMed] [Google Scholar]
- PAGE E. Cat heart muscle in vitro. II. The steady state restpotential in quiescent papillary muscles. J Gen Physiol. 1962 Nov;46:189–199. doi: 10.1085/jgp.46.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RIECKER G., DOBBELSTEIN H., ROEHL D., BOLTE H. D. MESSUNGEN DES MEMBRANPOTENTIALS EINZELMER QUERGESTREIFTER MUSKELZELLEN BEI MYOTONIA CONGENITA (THOMSEN) Klin Wochenschr. 1964 Jun 1;42:519–522. doi: 10.1007/BF01486678. [DOI] [PubMed] [Google Scholar]
- SHANES A. M., BERMAN M. D. Penetration of the desheathed toad sciatic nerve by ions and molecules. II. Kinetics. J Cell Physiol. 1955 Apr;45(2):199–240. doi: 10.1002/jcp.1030450205. [DOI] [PubMed] [Google Scholar]
- SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
- SJODIN R. A., HENDERSON E. G. TRACER AND NON-TRACER POTASSIUM FLUXES IN FROG SARTORIUS MUSCLE AND THE KINETICS OF NET POTASSIUM MOVEMENT. J Gen Physiol. 1964 Mar;47:605–638. doi: 10.1085/jgp.47.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Liew H. D. Semilogarithmic Plots of Data Which Reflect a Continuum of Exponential Processes. Science. 1962 Nov 9;138(3541):682–683. doi: 10.1126/science.138.3541.682. [DOI] [PubMed] [Google Scholar]
- WINEGRAD S., SHANES A. M. Calcium flux and contractility in guinea pig atria. J Gen Physiol. 1962 Jan;45:371–394. doi: 10.1085/jgp.45.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]