Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1966 Sep 1;50(1):9–24. doi: 10.1085/jgp.50.1.9

The β-Glucosidase of the Yeast Cell Surface

J Gordin Kaplan 1, Wanda Tacreiter 1
PMCID: PMC2225639  PMID: 5971036

Abstract

There are two distinct components of the system which limits the rate at which intact cells of S. cerevisiae C hydrolyze external β-glucosides; one component requires metabolic energy and the other is stereospecific for β-glucosides. The stereospecific component is localized at the cell membrane, as shown by its sensitivity to heavy metal inhibitors which did not penetrate the cell under the conditions used. It was shown that cellobiose-grown cells were able to remove cellobiose from the medium in which they were incubated, and that the cellobiose uptake system was identical to that which limits the patent β-glucosidase activity. In order to test the hypothesis that the system in question was a transport system, for β-glucosides the ability of cellobiose-grown cells to take up 14C-labeled methyl-β-glucoside (MBG) was studied. The induced cells were able to take up MBG-14C and the label could be partially chased out by cold MBG and cellobiose; glucose-grown cells could not incorporate label. However, induced cells could not take up label when incubated with 14C-MBG, thus excluding the hypothesis of transport of intact β-glucosides. It was concluded that the stereospecific membrane component was actually a β-glucosidase, coupled to an energy-dependent transport system for the glucose moiety; the function of the latter was rate-limiting in the over-all activity of the entire system.

Full Text

The Full Text of this article is available as a PDF (833.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGER M., HEJMOVA L., KLEINZELLER A. Transport of some mono- and di-saccharides into yeast cells. Biochem J. 1959 Feb;71(2):233–242. doi: 10.1042/bj0710233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUTTIN G., COHEN G. N., MONOD J., RICKENBERG H. V. La galactoside-perméase d'Escherichia coli. Ann Inst Pasteur (Paris) 1956 Dec;91(6):829–857. [PubMed] [Google Scholar]
  3. Bechet J., Wiame J. M. Indication of a specific regulatory binding protein for ornithinetranscarbamylase in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1965 Nov 8;21(3):226–234. doi: 10.1016/0006-291x(65)90276-7. [DOI] [PubMed] [Google Scholar]
  4. CITRI N. Two antigenically different states of active penicillinase. Biochim Biophys Acta. 1958 Feb;27(2):277–281. doi: 10.1016/0006-3002(58)90334-2. [DOI] [PubMed] [Google Scholar]
  5. COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EBERHART B., CROSS D. F., CHASE L. R. BETA-GLUCOSIDASE SYSTEM OF NEUROSPORA CRASSA. I. BETA-GLUCOSIDASE AND CELLULASE ACTIVITIES OF MUTANT AND WILD-TYPE STRAINS. J Bacteriol. 1964 Apr;87:761–770. doi: 10.1128/jb.87.4.761-770.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FUKUHARA H. RNA SYNTHESIS OF YEAST IN THE PRESENCE OF CYCLOHEXIMIDE. Biochem Biophys Res Commun. 1965 Jan 18;18:297–301. doi: 10.1016/0006-291x(65)90757-6. [DOI] [PubMed] [Google Scholar]
  8. GARBER N., CITRI N. The interaction of penicillinase with penicillins. I. Effect of substrates and of a competitive inhibitor on native and urea-treated enzyme. Biochim Biophys Acta. 1962 Aug 13;62:385–396. doi: 10.1016/0006-3002(62)90268-8. [DOI] [PubMed] [Google Scholar]
  9. Horikoshi K., Ikeda Y. Studies on the spore coats of aspergillus oryzae. II. Conidia coat-bound beta-glucosidase. Biochim Biophys Acta. 1965 Nov 1;101(3):352–357. doi: 10.1016/0926-6534(65)90014-x. [DOI] [PubMed] [Google Scholar]
  10. KAPLAN J. G. AN INDUCIBLE SYSTEM FOR THE HYDROLYSIS AND TRANSPORT OF BETA-GLUCOSIDES IN YEAST. I. CHARACTERISTICS OF THE BETA-GLUCOSIDASE ACTIVITY OF INTACT AND OF LYSED CELLS. J Gen Physiol. 1965 May;48:873–886. doi: 10.1085/jgp.48.5.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KAPLAN J. G. THE REVERSION OF CATALASE DURING GROWTH OF YEAST IN ANAEROBIOSIS. J Gen Physiol. 1963 Sep;47:103–115. doi: 10.1085/jgp.47.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KOSHLAND D. E., Jr, YANKEELOV J. A., Jr, THOMA J. A. Specificity and catalytic power in enzyme action. Fed Proc. 1962 Nov-Dec;21:1031–1038. [PubMed] [Google Scholar]
  13. POLLOCK M. R. The cell-bound penicillinase of Bacillus cereus. J Gen Microbiol. 1956 Aug;15(1):154–169. doi: 10.1099/00221287-15-1-154. [DOI] [PubMed] [Google Scholar]
  14. ROTHSTEIN A. Cell membrane as site of action of heavy metals. Fed Proc. 1959 Dec;18:1026–1038. [PubMed] [Google Scholar]
  15. SWISHER E. J., STORVICK W. O., KING K. W. METABOLIC NONEQUIVALENCE OF THE TWO GLUCOSE MOIETIES OF CELLOBIOSE IN CELLVIBRIO GILVUS. J Bacteriol. 1964 Oct;88:817–820. doi: 10.1128/jb.88.4.817-820.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES