Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1966 Nov 1;50(2):473–489. doi: 10.1085/jgp.50.2.473

Anion Permeability of the Olfactory Receptive Membrane

S F Takagi 1, G A Wyse 1, Toshi Yajima 1
PMCID: PMC2225645  PMID: 11526841

Abstract

The ionic mechanism of the electropositive olfactory receptor potential was studied in the bullfrog and the swamp frog. The positive receptor potential strikingly decreased in amplitude in chloride-free solution. When the olfactory epithelium was immersed in high-KCl-Ringer's solution and then in Cl-free, high-K solution, the polarity of the positive potential could be reversed. This is supposed to be due to the exit of the increased internal chloride ion. From the above two experiments it is concluded that the positive olfactory receptor potential depends primarily upon the influx of the chloride ion through the olfactory receptive membrane. Some contribution by potassium and possibly other ions may occur. The ability of other anions to substitute for chloride was examined. It was found that only Br-, F-, and HCO2 - could penetrate the olfactory receptive membrane. The sieve hypothesis in the inhibitory post-synaptic membrane (Coombs, Eccles, and Fatt, 1955) is not applicable to the olfactory receptive membrane on the basis of the size of hydrated ions, but it may be applicable on the basis of the sizes of naked ions.

Full Text

The Full Text of this article is available as a PDF (953.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. Potassium chloride movement and the membrane potential of frog muscle. J Physiol. 1960 Apr;151:154–185. [PMC free article] [PubMed] [Google Scholar]
  2. AI N., TAKAGI S. F. THE EFFECT OF ETHER AND CHLOROFORM ON THE OLFACTORY EPITHELIUM. Jpn J Physiol. 1963 Oct 15;13:454–465. doi: 10.2170/jjphysiol.13.454. [DOI] [PubMed] [Google Scholar]
  3. ARAKI T., ITO M., OSCARSSON O. Anion permeability of the synaptic and non-synaptic motoneurone membrane. J Physiol. 1961 Dec;159:410–435. doi: 10.1113/jphysiol.1961.sp006818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ASADA Y. EFFECTS OF INTRACELLULARLY INJECTED ANIONS ON THE MAUTHNER CELLS OF GOLDFISH. Jpn J Physiol. 1963 Dec 15;13:583–598. doi: 10.2170/jjphysiol.13.583. [DOI] [PubMed] [Google Scholar]
  5. BOISTEL J., FATT P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J Physiol. 1958 Nov 10;144(1):176–191. doi: 10.1113/jphysiol.1958.sp006094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. COOMBS J. S., ECCLES J. C., FATT P. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol. 1955 Nov 28;130(2):326–374. doi: 10.1113/jphysiol.1955.sp005412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DESMEDT J. E. Electrical activity and intracellular sodium concentration in frog muscle. J Physiol. 1953 Jul;121(1):191–205. doi: 10.1113/jphysiol.1953.sp004940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. EDWARDS C., HAGIWARA S. Potassium ions and the inhibitory process in the crayfish stretch receptor. J Gen Physiol. 1959 Nov;43:315–321. doi: 10.1085/jgp.43.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FATT P., KATZ B. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J Physiol. 1953 Aug;121(2):374–389. doi: 10.1113/jphysiol.1953.sp004952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GESTELAND R. C. INITIAL EVENTS OF THE ELECTRO-OLFACTOGRAM. Ann N Y Acad Sci. 1964 Jul 30;116:440–447. doi: 10.1111/j.1749-6632.1964.tb45073.x. [DOI] [PubMed] [Google Scholar]
  11. GRUNDFEST H., REUBEN J. P., RICKLES W. H., Jr The electrophysiology and pharmacology of lobster neuromuscular synapses. J Gen Physiol. 1959 Jul 20;42(6):1301–1323. doi: 10.1085/jgp.42.6.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HAGIWARA S., KUSANO K., SAITO S. Membrane changes in crayfish stretch receptor neutron during synaptic inhibition and under action of gamma-aminobutyric acid. J Neurophysiol. 1960 Sep;23:505–515. doi: 10.1152/jn.1960.23.5.505. [DOI] [PubMed] [Google Scholar]
  13. HAMASAKI D. I. The effect of sodium ion concentration on the electroretinogram of the isolated retina of the frog. J Physiol. 1963 Jun;167:156–168. doi: 10.1113/jphysiol.1963.sp007138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HIGASHINO S., TAKAGI S. F. THE EFFECT OF ELECTROTONUS ON THE OLFACTORY EPITHELIUM. J Gen Physiol. 1964 Nov;48:323–335. doi: 10.1085/jgp.48.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HIGASHINO S., TAKAGI S. F., YAJIMA M. The olfactory stimulating effectiveness of homologous series of substances studied in the frog. Jpn J Physiol. 1961 Oct 15;11:530–544. doi: 10.2170/jjphysiol.11.530. [DOI] [PubMed] [Google Scholar]
  16. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ITO M., KOSTYUK P. G., OSHIMA T. Further study on anion permeability of inhibitory post-synaptic membrane of cat motoneurones. J Physiol. 1962 Oct;164:150–156. doi: 10.1113/jphysiol.1962.sp007009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KERKUT G. A., THOMAS R. C. THE EFFECT OF ANION INJECTION AND CHANGES IN THE EXTERNAL POTASSIUM AND CHLORIDE CONCENTRATION ON THE REVERSAL POTENTIALS OF THE IPSP AND ACETYLCHOLINE. Comp Biochem Physiol. 1964 Feb;11:199–213. doi: 10.1016/0010-406x(64)90163-x. [DOI] [PubMed] [Google Scholar]
  19. OTTOSON D. Studies on the relationship between olfactory stimulating effectiveness and physico-chemical properties of odorous compounds. Acta Physiol Scand. 1958 Aug 25;43(2):167–181. doi: 10.1111/j.1748-1716.1958.tb01585.x. [DOI] [PubMed] [Google Scholar]
  20. SHIBUYA T., TAKAGI S. F. ELECTRICAL RESPONSE AND GROWTH OF OLFACTORY CILIA OF THE OLFACTORY EPITHELIUM OF THE NEWT IN WATER AND ON LAND. J Gen Physiol. 1963 Sep;47:71–82. doi: 10.1085/jgp.47.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SHIBUYA T. The electrical responses of the olfactory epithelium of some fishes. Jpn J Physiol. 1960 Jun 29;10:317–326. doi: 10.2170/jjphysiol.10.317. [DOI] [PubMed] [Google Scholar]
  22. Shibuya T. Dissociation of Olfactory Neural Response and Mucosal Potential. Science. 1964 Mar 20;143(3612):1338–1339. doi: 10.1126/science.143.3612.1338. [DOI] [PubMed] [Google Scholar]
  23. TAKAGI S. F., SHIBUYA T., HIGASHINO S., ARAI T. The stimulative and anaesthetic actions of ether on the olfactory epithelium of the frog and the toad. Jpn J Physiol. 1960 Dec 15;10:571–584. doi: 10.2170/jjphysiol.10.571. [DOI] [PubMed] [Google Scholar]
  24. TAKAGI S. F., SHIBUYA T. The electrical activity of the olfactory epithelium studied with micro- and macro-electrodes. Jpn J Physiol. 1960 Aug 15;10:385–395. doi: 10.2170/jjphysiol.10.385. [DOI] [PubMed] [Google Scholar]
  25. TAKAGI S. F., YAJIMA T. ELECTRICAL ACTIVITY AND HISTOLOGICAL CHANGE IN THE DEGENERATING OLFACTORY EPITHELIUM. J Gen Physiol. 1965 Mar;48:559–569. doi: 10.1085/jgp.48.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. TAKAGI S. F., YAJIMA T. ELECTRICAL RESPONSES TO ODOURS OF DEGENERATING OLFACOTRY EPITHELIUM. Nature. 1964 Jun 20;202:1220–1220. doi: 10.1038/2021220a0. [DOI] [PubMed] [Google Scholar]
  27. TAKEDA K. The nature of impulses of single tarsal chemoreceptors in the butterfly, Vanessa indica. J Cell Comp Physiol. 1961 Dec;58:233–245. doi: 10.1002/jcp.1030580304. [DOI] [PubMed] [Google Scholar]
  28. TAKEUCHI N. Some properties of conductance changes at the end-plate membrane during the action of acetylcholine. J Physiol. 1963 Jun;167:128–140. doi: 10.1113/jphysiol.1963.sp007136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. TRAUTWEIN W., DUDEL J. Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflugers Arch. 1958;266(3):324–334. doi: 10.1007/BF00416781. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES