Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1966 Nov 1;50(2):461–471. doi: 10.1085/jgp.50.2.461

Ionic Conductance Changes in Lobster Axon Membrane When Lanthanum Is Substituted for Calcium

M Takata 1, W F Pickard 1, J Y Lettvin 1, J W Moore 1
PMCID: PMC2225656  PMID: 11526840

Abstract

The trivalent rare earth lanthanum was substituted for calcium in the sea water bathing the exterior of an "artificial node" of a lobster axon in a sucrose gap. It caused a progressive rise in threshold, and a decrease in the height of the action potential as well as in its rates of rise and fall. Prolonged application produced an excitation block. Voltage-clamp studies of the ionic currents showed that the time courses of the ionic conductance changes for both sodium and potassium were increased. Concurrently, the potentials at which the conductance increases occurred were shifted to more positive inside values for the La+++ sea water. These effects resemble changes resulting from a high external calcium concentration. Over and above this, La+++ also causes a marked reduction in the maximum amount of conductance increase following a depolarizing potential step. Membrane action potentials similar to those observed experimentally in the La+++ solution have been computed with appropriate parameter changes in the Hodgkin-Huxley equations.

Full Text

The Full Text of this article is available as a PDF (582.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaustein M. P., Goldman D. E. Competitive action of calcium and procaine on lobster axon. A study of the mechanism of action of certain local anesthetics. J Gen Physiol. 1966 May;49(5):1043–1063. doi: 10.1085/jgp.49.5.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FRANKENHAEUSER B. The effect of calcium on the myelinated nerve fibre. J Physiol. 1957 Jul 11;137(2):245–260. doi: 10.1113/jphysiol.1957.sp005809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J Gen Physiol. 1962 Jul;45:1217–1238. doi: 10.1085/jgp.45.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Membrane potentials of the lobster giant axon obtained by use of the sucrose-gap technique. J Gen Physiol. 1962 Jul;45:1195–1216. doi: 10.1085/jgp.45.6.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LETTVIN J. Y., PICKARD W. F., MCCULLOCH W. S., PITTS W. A THEORY OF PASSIVE ION FLUX THROUGH AXON MEMBRANES. Nature. 1964 Jun 27;202:1338–1339. doi: 10.1038/2021338a0. [DOI] [PubMed] [Google Scholar]
  6. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES