Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Dec 1;50(11):2603–2632. doi: 10.1085/jgp.50.11.2603

Fluorometric Measurement of Pyridine Nucleotide Reduction in the Giant Axon of the Squid

Marshall G Doane 1
PMCID: PMC2225669  PMID: 4384698

Abstract

By monitoring the fluorescence of the isolated giant axon of the squid Loligo pealei, it was possible to follow changes in its oxidation-reduction state as caused by the action of anoxia, cyanide, Amytal, and azide. The response to oxygen depletion was very rapid, the NAD within the axon being 90% reduced within 1–2 min. Cyanide and Amytal gave essentially similar results, although somewhat longer periods of time elapsed during their onset and washout periods. The extent of NAD reduction was essentially the same under conditions of anoxia and treatment with cyanide and Amytal. Azide was less effective in this respect, and at comparatively high levels of concentration (25–50 mM) gave values of 40% or less of the reduction observed with the other inhibitors. The application of ouabain and strophanthidin gave no observable NAD reduction. Variations in the time required to consume given quantities of dissolved oxygen before and after stimulation indicated an increase of 10–20% in oxygen uptake rate associated with activity, although this figure appeared to be a function of the surface-to-volume ratio of the axon. A biochemical analysis of axoplasm for oxidized and reduced pyridine nucleotide was made. Fluorometric examination of centrifuged axoplasm indicated that the NAD-NADH was largely confined to the mitochondria of the axon.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRINK F., Jr, BRONK D. W., CARLSON F. D., CONNELLY C. M. The oxygen uptake of active axons. Cold Spring Harb Symp Quant Biol. 1952;17:53–67. doi: 10.1101/sqb.1952.017.01.008. [DOI] [PubMed] [Google Scholar]
  2. BRINLEY F. J., Jr, MULLINS L. J. ION FLUXES AND TRANSFERENCE NUMBER IN SQUID AXONS. J Neurophysiol. 1965 May;28:526–544. doi: 10.1152/jn.1965.28.3.526. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B., BALTSCHEFFSKY H. Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide. J Biol Chem. 1958 Sep;233(3):736–739. [PubMed] [Google Scholar]
  4. CHANCE B., COHEN P., JOBSIS F., SCHOENER B. Intracellular oxidation-reduction states in vivo. Science. 1962 Aug 17;137(3529):499–508. doi: 10.1126/science.137.3529.499. [DOI] [PubMed] [Google Scholar]
  5. CHANCE B., HOLLUNGER G. The interaction of energy and electron transfer reactions in mitochondria. IV. The pathway of electron transfer. J Biol Chem. 1961 May;236:1562–1568. [PubMed] [Google Scholar]
  6. CHANCE B., HOLLUNGER G. The interaction of energy and electron transfer reactions in mitochondria. VI. The efficiency of the reaction. J Biol Chem. 1961 May;236:1577–1584. [PubMed] [Google Scholar]
  7. CHANCE B. The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway. J Biol Chem. 1961 May;236:1569–1576. [PubMed] [Google Scholar]
  8. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  9. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem. 1956 Jul;221(1):477–489. [PubMed] [Google Scholar]
  10. Chance B. Reaction of oxygen with the respiratory chain in cells and tissues. J Gen Physiol. 1965 Sep;49(1 Suppl):163–195. doi: 10.1085/jgp.49.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DOTY R. W., GERARD R. W. Nerve conduction without increased oxygen consumption: action of azide and fluoroacetate. Am J Physiol. 1950 Aug 1;162(2):458–468. doi: 10.1152/ajplegacy.1950.162.2.458. [DOI] [PubMed] [Google Scholar]
  12. DUYSENS L. N., KRONEBERG G. H. The fluorescence spectrum of the complex of reduced phosphopyridine nucleotide and alcohol dehydrogenase from yeast. Biochim Biophys Acta. 1957 Nov;26(2):437–438. doi: 10.1016/0006-3002(57)90034-3. [DOI] [PubMed] [Google Scholar]
  13. EILER J. J., McEWEN W. K. The effect of pentobarbital on aerobic phosphorylation in brain homogenates. Arch Biochem. 1949 Jan;20(1):163–165. [PubMed] [Google Scholar]
  14. ERNSTER L., JALLING O., LOW H., LINDBERG O. Alternative pathways of mitochondrial DPNH oxidation, studied with amytal. Exp Cell Res. 1955;(Suppl 3):124–132. [PubMed] [Google Scholar]
  15. ESTABROOK R. W. Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal Biochem. 1962 Sep;4:231–245. doi: 10.1016/0003-2697(62)90006-4. [DOI] [PubMed] [Google Scholar]
  16. GARCIA-BUNUEL L., McDOUGAL D. B., Jr, BURCH H. B., JONES E. M., TOUHILL E. Oxidized and reduced pyridine nucleotide levels and enzyme activities in brain and liver of niacin deficient rats. J Neurochem. 1962 Nov-Dec;9:589–594. doi: 10.1111/j.1471-4159.1962.tb04215.x. [DOI] [PubMed] [Google Scholar]
  17. Jowett M., Quastel J. H. The effects of narcotics on tissue oxidations. Biochem J. 1937 Apr;31(4):565–578. doi: 10.1042/bj0310565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jöbsis F. F., Duffield J. C. Oxidative and glycolytic recovery metabolism in muscle. J Gen Physiol. 1967 Mar;50(4):1009–1047. doi: 10.1085/jgp.50.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KEYNES R. D., LEWIS P. R. The sodium and potassium content of cephalopod nerve fibers. J Physiol. 1951 Jun;114(1-2):151–182. doi: 10.1113/jphysiol.1951.sp004609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KREBS H. A., EGGLESTON L. V., D'ALESSANDRO A. The effect of succinate and amytal on the reduction of acetoacetate in animal tissues. Biochem J. 1961 Jun;79:537–549. doi: 10.1042/bj0790537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LOOMIS W. F., LIPMANN F. Inhibition of phosphorylation by azide in kidney homogenate. J Biol Chem. 1949 May;179(1):503–503. [PubMed] [Google Scholar]
  22. LOWRY O. H., PASSONNEAU J. V., SCHULZ D. W., ROCK M. K. The measurement of pyridine nucleotides by enzymatic cycling. J Biol Chem. 1961 Oct;236:2746–2755. [PubMed] [Google Scholar]
  23. MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. 2. Effect of inhibitors and added cofactors. Biochem J. 1957 Dec;67(4):572–578. doi: 10.1042/bj0670572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. ROBERTS N. R., COELHO R. R., LOWRY O. H., CRAWFORD E. J. Enzyme activities of giant squid axoplasm and axon sheath. J Neurochem. 1958 Dec;3(2):109–115. doi: 10.1111/j.1471-4159.1958.tb12616.x. [DOI] [PubMed] [Google Scholar]
  25. ROBERTSON H. E., BOYER P. D. The effect of azide on phosphorylation accompanying electron transport and glycolysis. J Biol Chem. 1955 May;214(1):295–305. [PubMed] [Google Scholar]
  26. SACKTOR B. Investigations on the mitochondria of the house fly, Musca domestica L. I. Adenosinetriphosphatases. J Gen Physiol. 1953 Jan;36(3):371–387. doi: 10.1085/jgp.36.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SHANES A. M., BERMAN M. D. Kinetics of ion movement in the squid giant axon. J Gen Physiol. 1955 Nov 20;39(2):279–300. doi: 10.1085/jgp.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SWANSON M. A. Studies on the non-oxidative exchange between inorganic phosphate and ATP, as catalyzed by intact mitochondria. Biochim Biophys Acta. 1956 Apr;20(1):85–91. doi: 10.1016/0006-3002(56)90266-9. [DOI] [PubMed] [Google Scholar]
  29. WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. ZERAHN K. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol Scand. 1956 May 31;36(4):300–318. doi: 10.1111/j.1748-1716.1956.tb01327.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES