Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Dec 1;50(11):2547–2564. doi: 10.1085/jgp.50.11.2547

Nonsolvent Water in Human Erythrocytes and Hemoglobin Solutions

C M Gary Bobo 1
PMCID: PMC2225672  PMID: 5584620

Abstract

Distribution ratios of water-soluble nonelectrolytes have been measured for two systems, human red bood cells/isotonic saline and hemoglobin solutions/water. The results show that for these solutes there is a significant amount of nonsolvent water associated with Hb. However, the amount of this nonsolvent water depends markedly on the temperature, as well as on the size, steric configuration, and functional groups of the probe solutes. The significance of the data is discussed.

Full Text

The Full Text of this article is available as a PDF (1,013.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHAPLIN H., Jr, MOLLISON P. L. Correction for plasma trapped in the red cell column of the hematocrit. Blood. 1952 Dec;7(12):1227–1238. [PubMed] [Google Scholar]
  2. Cook J. S. Nonsolvent water in human erythrocytes. J Gen Physiol. 1967 May;50(5):1311–1325. doi: 10.1085/jgp.50.5.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIDSON E. The redistribution of the red cells on centrifugation. Acta Haematol. 1960 Feb;23:92–95. doi: 10.1159/000206211. [DOI] [PubMed] [Google Scholar]
  4. HUTCHINSON E. The behavior of human erythrocytes in aqueous alcohol solutions. Arch Biochem Biophys. 1952 Jul;38:35–41. doi: 10.1016/0003-9861(52)90006-4. [DOI] [PubMed] [Google Scholar]
  5. KEITER H. G., BERMAN H., JONES H., MACLACHLAN E. The chemical composition of normal human red blood cells, including variability among centrifuged cells. Blood. 1955 Apr;10(4):370–376. [PubMed] [Google Scholar]
  6. LEFEVRE P. G. THE OSMOTICALLY FUNCTIONAL WATER CONTENT OF THE HUMAN ERYTHROCYTE. J Gen Physiol. 1964 Jan;47:585–603. doi: 10.1085/jgp.47.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LINDENBERG B. A., ZUILI S. Variation du pouvoir solvant de l'eau cellulaire en fonction de l'incrément diélectrique des molécules solutées. C R Hebd Seances Acad Sci. 1952 Jun 23;234(26):2573–2575. [PubMed] [Google Scholar]
  8. MILLER D. M. SUGAR UPTAKE AS A FUNCTION OF CELL VOLUME IN HUMAN ERYTHROCYTES. J Physiol. 1964 Jan;170:219–225. doi: 10.1113/jphysiol.1964.sp007325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Macleod J., Ponder E. Solvent water in the mammalian erythrocyte. J Physiol. 1936 Feb 8;86(2):147–152. doi: 10.1113/jphysiol.1936.sp003349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. OGSTON A. G. Chemistry of proteins, peptides, and amino acids. Annu Rev Biochem. 1955;24:181–206. doi: 10.1146/annurev.bi.24.070155.001145. [DOI] [PubMed] [Google Scholar]
  11. SAVITZ D., SIDEL V. W., SOLOMON A. K. OSMOTIC PROPERTIES OF HUMAN RED CELLS. J Gen Physiol. 1964 Sep;48:79–94. doi: 10.1085/jgp.48.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SINANOGLU O., ABDULNUR S. EFFECT OF WATER AND OTHER SOLVENTS ON THE STRUCTURE OF BIOPOLYMERS. Fed Proc. 1965 Mar-Apr;24:S12–S23. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES