Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Jan 1;50(3):603–629. doi: 10.1085/jgp.50.3.603

The Electrical and Mechanical Activity of the Esophageal Cell of Ascaris lumbricoides

J del Castillo 1, T Morales 1
PMCID: PMC2225679  PMID: 11526849

Abstract

The esophagus of Ascaris is a syncytial muscle organ of tubular shape in which the myofibrils are arranged radially between the lumen and the external surface. A resting potential of almost 40 mv (cytoplasm negative) is maintained by the extracellular organic anions (volatile fatty acids) found in the perienteric fluid. Replacement of these anions by Cl- ions results in a large depolarization. The resting potential is also decreased when the external pH is lowered. The leading phase of the action potential with a positive overshoot of about 18 mv elicits contraction of the myofibrils, development of negative pressure within the lumen, and suction of liquid and food particles. The mechanical energy stored in the elastic components of the cell is released when the myofibrils relax, thus injecting the contents of the lumen into the intestine. A fast and synchronous relaxation is elicited by a regenerative membrane polarization, a negative spike with a peak value of up to 108 mv produced by an increase in the permeability of the membrane to K+ ions. Cells completely depolarized in "chloride" saline are still able to generate such large potassium spikes.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUEDING E. Formation of tiglic and n-valeric acids by bacteria-free Ascaris lumbricoides. J Biol Chem. 1953 Jun;202(2):505–512. [PubMed] [Google Scholar]
  2. BUEDING E., YALE H. W. Production of alpha-methylbutyric acid by bacteria-free Ascaris lumbricoides. J Biol Chem. 1951 Nov;193(1):411–423. [PubMed] [Google Scholar]
  3. DEBELL J. T., DELCASTILLO J., SANCHEZ V. ELECTROPHYSIOLOGY OF THE SOMATIC MUSCLE CELLS OF ASCARIS LUMBRICOIDES. J Cell Physiol. 1963 Oct;62:159–177. doi: 10.1159/000007808. [DOI] [PubMed] [Google Scholar]
  4. DEL CASTILLO J., NELSON T. E., Jr, SANCHEZ V. Mechanism of the increased acetylcholine sensitivity of skeletal muscle in low pH solutions. J Cell Comp Physiol. 1962 Feb;59:35–44. doi: 10.1002/jcp.1030590105. [DOI] [PubMed] [Google Scholar]
  5. DELCASTILLO J., DEMELLO W., MORALES T. HYPERPOLARIZING ACTION POTENTIALS RECORDED FROM THE OESOPHAGUS OF ASCARIS LUMBRICOIDES. Nature. 1964 Aug 1;203:530–531. doi: 10.1038/203530a0. [DOI] [PubMed] [Google Scholar]
  6. ELLISON T., THOMSON W. A., STRONG F. M. Volatile fatty acids from axenic Ascaris lumbricoides. Arch Biochem Biophys. 1960 Dec;91:247–254. doi: 10.1016/0003-9861(60)90498-7. [DOI] [PubMed] [Google Scholar]
  7. FALK G., LANDA J. F. Prolonged response of skeletal muscle in the absence of penetrating anions. Am J Physiol. 1960 Feb;198:289–299. doi: 10.1152/ajplegacy.1960.198.2.289. [DOI] [PubMed] [Google Scholar]
  8. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JARMAN M. Electrical activity in the muscle cells of Ascaris lumbricoides. Nature. 1959 Oct 17;184(Suppl 16):1244–1244. doi: 10.1038/1841244a0. [DOI] [PubMed] [Google Scholar]
  11. LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
  12. MAPES C. J. STRUCTURE AND FUNCTION IN THE NEMATODE PHARYNX. I. THE STRUCTURE OF THE PHARYNGES OF ASCARIS LUMBRICOIDES, OXYURIS EQUI, APLECTANA BREVICAUDATA AND PANAGRELLUS SILUSIAE. Parasitology. 1965 May;55:269–284. doi: 10.1017/s003118200006875x. [DOI] [PubMed] [Google Scholar]
  13. MOYLE V., BALDWIN E. Volatile fatty acids of Ascaris lumbricoides from the pig. Biochem J. 1952 Jul;51(4):504–510. doi: 10.1042/bj0510504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PAUSCHINGER P., BRECHT K. Influence of calcium on the potassium-contracture of 'slow' and 'fast' skeletal muscle fibres of the frog. Nature. 1961 Feb 18;189:583–584. doi: 10.1038/189583a0. [DOI] [PubMed] [Google Scholar]
  15. ROCHE M., MARTINEZ-TORRES C., MACPHERSON L. Electroesophagogram of individual hookworm (Ancylostoma caninum). Science. 1962 Apr 13;136(3511):148–150. doi: 10.1126/science.136.3511.148. [DOI] [PubMed] [Google Scholar]
  16. TASAKI I., HAGIWAR A. S. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J Gen Physiol. 1957 Jul 20;40(6):859–885. doi: 10.1085/jgp.40.6.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. del Castillo J., Morales T. Extracellular action potentials recorded from the interior of the giant esophageal cell of Ascaris. J Gen Physiol. 1967 Jan;50(3):631–645. doi: 10.1085/jgp.50.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES