Abstract
The phenomenological definition of active transport by Kedem and the methods of Kedem and Katchalsky have been used to obtain practical equations describing active transport in the single salt and bi-ionic systems. Procedures were devised to evaluate the required set of 10 coefficients for the single salt case and 15 for the bi-ionic. Three of these coefficients are unusual. They express the effects of active transport, i.e. of entrainment between metabolism and the conventional transport flows: active salt transport coefficient, a volume pump coefficient, and an electrogenicity coefficient. In the bi-ionic case a new passive coefficient, λ, was used to express the linkage between the fluxes of the two salts. However, if primary active transport involves only one ion, for example in the bi-ionic case, 12 coefficients suffice and certain relations can be predicted between the practical coefficients. Particular types of primary active transport could be identified by this means. The relation of active transport to membrane electrogenesis was also examined and the flux ratio equation was rederived in terms of the practical coefficients. Applications to specific parallel and series membrane systems have been analyzed.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARRY R. J., DIKSTEIN S., MATTHEWS J., SMYTH D. H., WRIGHT E. M. ELECTRICAL POTENTIALS ASSOCIATED WITH INTESTINAL SUGAR TRANSFER. J Physiol. 1964 Jun;171:316–338. doi: 10.1113/jphysiol.1964.sp007379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIAMOND J. M. The mechanism of water transport by the gall-bladder. J Physiol. 1962 May;161:503–527. doi: 10.1113/jphysiol.1962.sp006900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FALK G., GERARD R. W. Effect of microinjected salts and ATP on the membrane potential and mechanical response of muscle. J Cell Physiol. 1954 Jun;43(3):393–403. doi: 10.1002/jcp.1030430311. [DOI] [PubMed] [Google Scholar]
- HOSHIKO T., LINDLEY B. D. THE RELATIONSHIP OF USSING'S FLUX-RATIO EQUATION TO THE THERMODYNAMIC DESCRIPTION OF MEMBRANE PERMEABILITY. Biochim Biophys Acta. 1964 Mar 30;79:301–317. [PubMed] [Google Scholar]
- KATCHALSKY A., KEDEMO Thermodynamics of flow processes in biological systems. Biophys J. 1962 Mar;2(2 Pt 2):53–78. doi: 10.1016/s0006-3495(62)86948-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLAHR S., BRICKER N. S. ENERGETICS OF ANAEROBIC SODIUM TRANSPORT BY THE FRESH WATER TURTLE BLADDER. J Gen Physiol. 1965 Mar;48:571–580. doi: 10.1085/jgp.48.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
- LINDLEY B. D., HOSHIKO T., LEB D. E. EFFECTS OF D2O AND OSMOTIC GRADIENTS ON POTENTIAL AND RESISTANCE OF THE ISOLATED FROG SKIN. J Gen Physiol. 1964 Mar;47:773–793. doi: 10.1085/jgp.47.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOSZYNSKI J. R., HOSHIKO T., LINDLEY B. D. NOTE ON THE CURIE PRINCIPLE. Biochim Biophys Acta. 1963 Nov 29;75:447–449. doi: 10.1016/0006-3002(63)90635-8. [DOI] [PubMed] [Google Scholar]
- Patlak C. S., Goldstein D. A., Hoffman J. F. The flow of solute and solvent across a two-membrane system. J Theor Biol. 1963 Nov;5(3):426–442. doi: 10.1016/0022-5193(63)90088-2. [DOI] [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
- WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]
- WINDHAGER E. E., WHITTEMBURY G., OKEN D. E., SCHATZMANN H. J., SOLOMON A. K. Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am J Physiol. 1959 Aug;197:313–318. doi: 10.1152/ajplegacy.1959.197.2.313. [DOI] [PubMed] [Google Scholar]