Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Mar 1;50(4):813–838. doi: 10.1085/jgp.50.4.813

Electrical Properties of the Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria

Akira Watanabe 1, Shosaku Obara 1, Toyohiro Akiyama 1, Katsuto Yumoto 1
PMCID: PMC2225689  PMID: 6034505

Abstract

In the Squilla heart ganglion, the pacemaker is located in the rostral group of cells. After spontaneous firing ceased, the electrophysiological properties of these cells were examined with intracellular electrodes. Cells respond to electrical stimuli with all-or-none action potentials. Direct stimulation by strong currents decreases the size of action potentials. Comparison with action potentials caused by axonal stimulation and analysis of time relations indicate that with stronger currents the soma membrane is directly stimulated whereas with weaker currents the impulse first arises in the axon and then invades the soma. Spikes evoked in a neuron spread into all other neurons. Adjacent cells are interconnected by electrotonic connections. Histologically axons are tied with the side-junction. B spikes of adjacent cells are blocked simultaneously by hyperpolarization or by repetitive stimulation. Experiments show that under such circumstances the B spike is not directly elicited from the A spike but is evoked by invasion of an impulse or electrotonic potential from adjacent cells. On rostral stimulation a small prepotential precedes the main spike. It is interpreted as an action potential from dendrites.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKI T., OTANI T. Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955 Sep;18(5):472–485. doi: 10.1152/jn.1955.18.5.472. [DOI] [PubMed] [Google Scholar]
  2. BENNETT M. V., ALJURE E., NAKAJIMA Y., PAPPAS G. D. Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science. 1963 Jul 19;141(3577):262–264. doi: 10.1126/science.141.3577.262. [DOI] [PubMed] [Google Scholar]
  3. BENNETT M. V., CRAIN S. M., GRUNDFEST H. Electrophysiology of supramedullary neurons in Spheroides maculatus. II. Properties of the electrically excitable membrane. J Gen Physiol. 1959 Sep;43:189–219. doi: 10.1085/jgp.43.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BULLOCK T. H., TERZUOLO C. A. Diverse forms of activity in the somata of spontaneous and integrating ganglion cells. J Physiol. 1957 Oct 30;138(3):341–364. doi: 10.1113/jphysiol.1957.sp005855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COOMBS J. S., CURTIS D. R., ECCLES J. C. The interpretation of spike potentials of motoneurones. J Physiol. 1957 Dec 3;139(2):198–231. doi: 10.1113/jphysiol.1957.sp005887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EDWARDS C., OTTOSON D. The site of impulse initiation in a nerve cell of a crustacean stretch receptor. J Physiol. 1958 Aug 29;143(1):138–148. doi: 10.1113/jphysiol.1958.sp006049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRANK K., FUORTES M. G. Stimulation of spinal motoneurones with intracellular electrodes. J Physiol. 1956 Nov 28;134(2):451–470. doi: 10.1113/jphysiol.1956.sp005657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FUORTES M. G., FRANK K., BECKER M. C. Steps in the production of motoneuron spikes. J Gen Physiol. 1957 May 20;40(5):735–752. doi: 10.1085/jgp.40.5.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAGIWARA S., BULLOCK T. H. Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J Cell Physiol. 1957 Aug;50(1):25–47. doi: 10.1002/jcp.1030500103. [DOI] [PubMed] [Google Scholar]
  10. HAGIWARA S., OOMURA Y. The critical depolarization for the spike in the squid giant axon. Jpn J Physiol. 1958 Sep 15;8(3):234–245. doi: 10.2170/jjphysiol.8.234. [DOI] [PubMed] [Google Scholar]
  11. HAGIWARA S., WATANABE A., SAITO N. Potential changes in syncytial neurons of lobster cardiac ganglion. J Neurophysiol. 1959 Sep;22:554–572. doi: 10.1152/jn.1959.22.5.554. [DOI] [PubMed] [Google Scholar]
  12. KAO C. Y., GRUNDFEST H. Postsynaptic electrogenesis in septate giant axons. I. Earthworm median giant axon. J Neurophysiol. 1957 Nov;20(6):553–573. doi: 10.1152/jn.1957.20.6.553. [DOI] [PubMed] [Google Scholar]
  13. TAUC L. Site of origin and propagation in spike in the giant neuron of Aplysia. J Gen Physiol. 1962 Jul;45:1077–1097. doi: 10.1085/jgp.45.6.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WATANABE A., GRUNDFEST H. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J Gen Physiol. 1961 Nov;45:267–308. doi: 10.1085/jgp.45.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WATANABE A., TAKEDA K. The spread of excitation among neurons in the heart ganglion of the stomatopod, Squillia oratoria. J Gen Physiol. 1963 Mar;46:773–801. doi: 10.1085/jgp.46.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WATANABE A. The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn J Physiol. 1958 Dec 20;8(4):305–318. doi: 10.2170/jjphysiol.8.305. [DOI] [PubMed] [Google Scholar]
  17. Watanabe A., Obara S., Akiyama T. Pacemaker potentials for the periodic burst discharge in the heart ganglion of a stomatopod, Squilla oratoria. J Gen Physiol. 1967 Mar;50(4):839–862. doi: 10.1085/jgp.50.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES