Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Mar 1;50(4):839–862. doi: 10.1085/jgp.50.4.839

Pacemaker Potentials for the Periodic Burst Discharge in the Heart Ganglion of a Stomatopod, Squilla oratoria

Akira Watanabe 1, Shosaku Obara 1, Toyohiro Akiyama 1
PMCID: PMC2225693  PMID: 6034506

Abstract

From somata of the pacemaker neurons in the Squilla heart ganglion, pacemaker potentials for the spontaneous periodic burst discharge are recorded with intracellular electrodes. The electrical activity is composed of slow potentials and superimposed spikes, and is divided into four types, which are: (a) "mammalian heart" type, (b) "slow generator" type, (c) "slow grower" type, and (d) "slow deficient" type. Since axons which are far from the somata do not produce slow potentials, the soma and dendrites must be where the slow potentials are generated. Hyperpolarization impedes generation of the slow potential, showing that it is an electrically excitable response. Membrane impedance increases on depolarization. Brief hyperpolarizing current can abolish the plateau but brief tetanic inhibitory fiber stimulation is more effective for the abolition. A single stimulus to the axon evokes the slow potential when the stimulus is applied some time after a previous burst. Repetitive stimuli to the axon are more effective in eliciting the slow potential, but the depolarization is not maintained on continuous stimulation. Synchronization of the slow potential among neurons is achieved by: (a) the electrotonic connections, with periodic change in resistance of the soma membrane, (b) active spread of the slow potential, and (c) synchronization through spikes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKI T., OTANI T. Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955 Sep;18(5):472–485. doi: 10.1152/jn.1955.18.5.472. [DOI] [PubMed] [Google Scholar]
  2. Adrian E. D., Buytendijk F. J. Potential changes in the isolated brain stem of the goldfish. J Physiol. 1931 Feb 25;71(2):121–135. doi: 10.1113/jphysiol.1931.sp002720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BROWN H. F. ELECTROPHYSIOLOGICAL INVESTIGATIONS OF THE HEART OF SQUILLA MANTIS. I. THE GANGLIONIC NERVE TRUNK. J Exp Biol. 1964 Dec;41:689–700. doi: 10.1242/jeb.41.4.689. [DOI] [PubMed] [Google Scholar]
  4. BULLOCK T. H., TERZUOLO C. A. Diverse forms of activity in the somata of spontaneous and integrating ganglion cells. J Physiol. 1957 Oct 30;138(3):341–364. doi: 10.1113/jphysiol.1957.sp005855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GRUNDFEST H. Ionic mechanisms in electrogenesis. Ann N Y Acad Sci. 1961 Sep 6;94:405–457. doi: 10.1111/j.1749-6632.1961.tb35554.x. [DOI] [PubMed] [Google Scholar]
  6. HAGIWARA S., BULLOCK T. H. Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J Cell Physiol. 1957 Aug;50(1):25–47. doi: 10.1002/jcp.1030500103. [DOI] [PubMed] [Google Scholar]
  7. HAGIWARA S. Nervous activities of the heart in Crustacea. Ergeb Biol. 1961;24:287–311. doi: 10.1007/978-3-642-94805-3_8. [DOI] [PubMed] [Google Scholar]
  8. HUTTER O. F., TRAUTWEIN W. Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart. J Gen Physiol. 1956 May 20;39(5):715–733. doi: 10.1085/jgp.39.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KANDEL E. R., SPENCER W. A. Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J Neurophysiol. 1961 May;24:243–259. doi: 10.1152/jn.1961.24.3.243. [DOI] [PubMed] [Google Scholar]
  10. NOBLE D. A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol. 1962 Feb;160:317–352. doi: 10.1113/jphysiol.1962.sp006849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. OIKAWA T. Electrical interactions between normal and TEA-treated zones of squid axon. Am J Physiol. 1962 May;202:865–871. doi: 10.1152/ajplegacy.1962.202.5.865. [DOI] [PubMed] [Google Scholar]
  12. TASAKI I., HAGIWAR A. S. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J Gen Physiol. 1957 Jul 20;40(6):859–885. doi: 10.1085/jgp.40.6.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. TASAKI I. Initiation and abolition of the action potential of a single node of Ranvier. J Gen Physiol. 1956 Jan 20;39(3):377–395. doi: 10.1085/jgp.39.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WATANABE A., TAKEDA K. The spread of excitation among neurons in the heart ganglion of the stomatopod, Squillia oratoria. J Gen Physiol. 1963 Mar;46:773–801. doi: 10.1085/jgp.46.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WATANABE A. The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn J Physiol. 1958 Dec 20;8(4):305–318. doi: 10.2170/jjphysiol.8.305. [DOI] [PubMed] [Google Scholar]
  16. WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236. doi: 10.1113/jphysiol.1951.sp004667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Watanabe A., Obara S., Akiyama T., Yumoto K. Electrical properties of the pacemaker neurons in the heart ganglion of a stomatopod, Squilla oratoria. J Gen Physiol. 1967 Mar;50(4):813–838. doi: 10.1085/jgp.50.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES