Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Mar 1;50(4):893–916. doi: 10.1085/jgp.50.4.893

The Role of Membrane Phosphoglycerate Kinase in the Control of Glycolytic Rate by Active Cation Transport in Human Red Blood Cells

John C Parker 1, Joseph F Hoffman 1
PMCID: PMC2225694  PMID: 4291916

Abstract

When the internal Na of human red cells is raised, both K influx and lactate production increase and become more sensitive to the inhibitory action of ouabain. This occurs with either glucose or purine nucleoside as substrate. Fresh whole hemolysates enriched with Na and Mg will convert intermediates above the triose phosphate dehydrogenase step to lactate at a rate which is slowed by ouabain. Intermediates beyond the phosphoglycerate kinase step (PGK) are metabolized at a very rapid rate which is not affected by ouabain. No metabolic effects of ouabain were found in ghost-free hemolysates. Hemoglobin-free ghosts were shown to have both triose phosphate dehydrogenase and PGK activity. The rate of this two-enzyme sequence was found to be a function of the ADP concentration, being maximal when ADP > 0.35 mM. Initial addition of ATP to the ghost system rendered the forward rate of the sequence sensitive to the inhibitory action of ouabain. When the sequence was run in reverse, no inhibitory effect of ouabain could be demonstrated. It is concluded that membrane PGK is a point at which the Na-K transport system can influence the metabolic rate and that this action is possibly exerted via a compartmentalized form of ADP which is an immediate substrate for the ghost PGK.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELS J., BOUMA W., NIEWEG H. O. Assay of intrinsic factor with anti-intrinsic factor serum in vitro. Biochim Biophys Acta. 1963 Apr 2;71:227–229. doi: 10.1016/0006-3002(63)91016-3. [DOI] [PubMed] [Google Scholar]
  2. ALIVISATOS S. G., KASHKET S., DENSTEDT O. F. The metabolism of the erythrocyte. IX. Diphosphopyridine nucleotidase of erythrocytes. Can J Biochem Physiol. 1956 Jan;34(1):46–60. [PubMed] [Google Scholar]
  3. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  4. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Verdier C. H., Garby L. Glucose metabolism in normal erythrocytes: II factors influencing the hexokinase step. Scand J Haematol. 1965;2(4):305–317. doi: 10.1111/j.1600-0609.1965.tb01307.x. [DOI] [PubMed] [Google Scholar]
  6. Eckel R. E., Rizzo S. C., Lodish H., Berggren A. B. Potassium transport and control of glycolysis in human erythrocytes. Am J Physiol. 1966 Apr;210(4):737–743. doi: 10.1152/ajplegacy.1966.210.4.737. [DOI] [PubMed] [Google Scholar]
  7. HASHIMOTO T., YOSHIKAWA H. HUMAN ERYTHROCYTE ADENOSINE TRIPHOSPHATE. D-3-PHOSPHOGLYCERATE 1-PHOSPHOTRANSFERASE. J Biochem. 1964 Sep;56:279–284. doi: 10.1093/oxfordjournals.jbchem.a127990. [DOI] [PubMed] [Google Scholar]
  8. JACOB H. S., JANDL J. H. INCREASED CELL MEMBRANE PERMEABILITY IN THE PATHOGENESIS OF HEREDITARY SPHEROCYTOSIS. J Clin Invest. 1964 Aug;43:1704–1720. doi: 10.1172/JCI105046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KASHKET S., DENSTEDT O. F. The metabolism of the erythrocyte. XV. Adenylate kinase of the erythrocyte. Can J Biochem Physiol. 1958 Oct;36(10):1057–1064. [PubMed] [Google Scholar]
  10. MINAKAMI S., KAKINUMA K., YOSHIKAWA H. THE CONTROL OF ERYTHROCYTE GLYCOLYSIS BY ACTIVE CATION TRANSPORT. Biochim Biophys Acta. 1964 Aug 19;90:434–436. doi: 10.1016/0304-4165(64)90219-3. [DOI] [PubMed] [Google Scholar]
  11. Minakami S., Yoshikawa H. Studies on erythrocyte glycolysis. 3. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis. J Biochem. 1966 Feb;59(2):145–150. doi: 10.1093/oxfordjournals.jbchem.a128275. [DOI] [PubMed] [Google Scholar]
  12. PARKER J. C., HOFFMAN J. F. FAILURE TO FIND INCREASED SODIUM, POTASSIUM-ATPASE IN RED CELL GHOSTS OF SCHIZOPHRENICS. Nature. 1964 Feb 22;201:823–823. doi: 10.1038/201823a0. [DOI] [PubMed] [Google Scholar]
  13. POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
  14. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  15. RACKER E., KRIMSKY I. The mechanism of oxidation of aldehydes by glyceralde-hyde-3-phosphate dehydrogenase. J Biol Chem. 1952 Oct;198(2):731–743. [PubMed] [Google Scholar]
  16. ROSE I. A., O'CONNELL E. L. THE ROLE OF GLUCOSE 6-PHOSPHATE IN THE REGULATION OF GLUCOSE METABOLISM IN HUMAN ERYTHROCYTES. J Biol Chem. 1964 Jan;239:12–17. [PubMed] [Google Scholar]
  17. Ronquist G., Agren G. Formation of adenosine triphosphate by human erythrocyte ghosts. Nature. 1966 Mar 12;209(5028):1090–1091. doi: 10.1038/2091090a0. [DOI] [PubMed] [Google Scholar]
  18. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  19. SCHRIER S. L. Studies of the metabolism of human erythrocyte membranes. J Clin Invest. 1963 Jun;42:756–766. doi: 10.1172/JCI104768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schrier S. L. Organization of enzymes in human erythrocyte membranes. Am J Physiol. 1966 Jan;210(1):139–145. doi: 10.1152/ajplegacy.1966.210.1.139. [DOI] [PubMed] [Google Scholar]
  21. Whittam R., Ager M. E. The connexion between active cation transport and metabolism in erythrocytes. Biochem J. 1965 Oct;97(1):214–227. doi: 10.1042/bj0970214. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES