Abstract
In randomly grown tissue culture cells (mouse leukemic lymphoblast, L5178Y) the number, volume, and Na+ and K+ content increase as an exponential function with a doubling time of 11.3 hr. In synchronously grown cells the volume increase of the population and of single cells follows the same exponential function as in randomly grown cells. In contrast, the cation content fluctuates during a single cell cycle. About 1½ hr after the cell division burst (at the beginning of the S period), a net loss of K+ occurs for a period of about 1 hr amounting to about 20% of the total K. Over the next 5 to 6 hr, the deficit in K+ is eliminated. The Na+ content shows a double fluctuation. It falls during the cell division burst, rises when the K+ content decreases, falls again when K+ content rises, and then increases again before the next cell division burst. The net fluxes of both Na+ and K+ are very small compared to the unidirectional fluxes (less than 5%), thus small changes in the balance of influx and efflux account for the changes in cation content during the growth cycle. Both unidirectional fluxes increase dramatically (by a factor of two) about 2 hr after the cell division burst, and then remain constant until after the next cell division. The pattern of electrolyte regulation during cell division does not follow a simple function such as cell number, cell surface, or cell volume, but must be related to specific internal events in the cell.
Full Text
The Full Text of this article is available as a PDF (854.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AULL F., HEMPLING H. G. Sodium fluxes in the Ehrlich mouse ascites tumor cell. Am J Physiol. 1963 May;204:789–794. doi: 10.1152/ajplegacy.1963.204.5.789. [DOI] [PubMed] [Google Scholar]
- DISCHE Z., BORENFREUND E. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem. 1951 Oct;192(2):583–587. [PubMed] [Google Scholar]
- FISCHER G. A., SARTORELLI A. C. DEVELOPMENT, MAINTENANCE AND ASSAY OF DRUG RESISTANCE. Methods Med Res. 1964;10:247–262. [PubMed] [Google Scholar]
- GOLD G. L., SOLOMON A. K. The transport of sodium into human erythrocytes in vivo. J Gen Physiol. 1955 Jan 20;38(3):389–404. doi: 10.1085/jgp.38.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROBECKER H., KROMPHARDT H., MARIANI H., HEINZ E. UNTERSUCHUNGEN UEBER DEN ELEKTROLYTHAUSHALT DER EHRLICH-ASCITES-TUMORZELLE. Biochem Z. 1963 Jul 26;337:462–476. [PubMed] [Google Scholar]
- HARRIS E. J., PRANKERD T. A. The rate of sodium extrusion from human erythrocytes. J Physiol. 1953 Sep;121(3):470–486. doi: 10.1113/jphysiol.1953.sp004959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D. The ionic movements during nervous activity. J Physiol. 1951 Jun;114(1-2):119–150. doi: 10.1113/jphysiol.1951.sp004608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAKER J. W., TAYLOR I. M., WELLER J. M., HASTINGS A. B. Rate of potassium exchange of the human erythrocyte. J Gen Physiol. 1950 Jul 20;33(6):691–702. doi: 10.1085/jgp.33.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. S. Theory and use of tracers in determining transfer rates in biological systems. Physiol Rev. 1957 Apr;37(2):133–154. doi: 10.1152/physrev.1957.37.2.133. [DOI] [PubMed] [Google Scholar]
- SALZMAN N. P. Systematic fluctuations in the cellular protein, RNA and DNA during growth of mammalian cell cultures. Biochim Biophys Acta. 1959 Jan;31(1):158–163. doi: 10.1016/0006-3002(59)90451-2. [DOI] [PubMed] [Google Scholar]
- SIMINOVITCH L., GRAHAM A. F., LESLEY S. M., NEVILL A. Propagation of L strain mouse cells in suspension. Exp Cell Res. 1957 Apr;12(2):299–308. doi: 10.1016/0014-4827(57)90143-x. [DOI] [PubMed] [Google Scholar]
- TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]