Abstract
From the ability of a concentrated suspension of human erythrocytes to regulate the pH of unbuffered, anisotonic, external media it is possible to calculate the fractional cell volume in which chloride is dissolved. The difference between this volume and the total cell water gives the nonsolvent water (for chloride) of the cell. Nonsolvent water is less than 3% of the isotonic cell volume. The quantity of nonsolvent water per cell may increase as the cells shrink in hypertonic solutions.
Full Text
The Full Text of this article is available as a PDF (855.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernal J. D. The structure of water and its biological implications. Symp Soc Exp Biol. 1965;19:17–32. [PubMed] [Google Scholar]
- Bromberg P. A., Theodore J., Robin E. D., Jensen W. N. Anion and hydrogen ion distribution in human blood. J Lab Clin Med. 1965 Sep;66(3):464–475. [PubMed] [Google Scholar]
- GLYNN I. M. The ionic permeability of the red cell membrane. Prog Biophys Biophys Chem. 1957;8:241–307. [PubMed] [Google Scholar]
- KEITER H. G., BERMAN H., JONES H., MACLACHLAN E. The chemical composition of normal human red blood cells, including variability among centrifuged cells. Blood. 1955 Apr;10(4):370–376. [PubMed] [Google Scholar]
- MILLER D. M. SUGAR UPTAKE AS A FUNCTION OF CELL VOLUME IN HUMAN ERYTHROCYTES. J Physiol. 1964 Jan;170:219–225. doi: 10.1113/jphysiol.1964.sp007325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAVITZ D., SIDEL V. W., SOLOMON A. K. OSMOTIC PROPERTIES OF HUMAN RED CELLS. J Gen Physiol. 1964 Sep;48:79–94. doi: 10.1085/jgp.48.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMS T. F., FORDHAM C. C., 3rd, HOLLANDER W., Jr, WELT L. G. A study of the osmotic behavior of the human erythrocyte. J Clin Invest. 1959 Sep;38:1587–1598. doi: 10.1172/JCI103937. [DOI] [PMC free article] [PubMed] [Google Scholar]