Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 May 1;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261

Kinetic Relations of the Na-Amino Acid Interaction at the Mucosal Border of Intestine

Peter F Curran 1, Stanley G Schultz 1, Ronald A Chez 1, Robert E Fuisz 1
PMCID: PMC2225714  PMID: 6033585

Abstract

The relation between unidirectional influxes of Na and amino acids across the mucosal border of rabbit ileum was studied under a variety of conditions. At constant Na concentration in the mucosal bathing solution, amino acid influx followed Michaelis-Menten kinetics permitting determination of maximal influx and the apparent Michaelis constant, Kt. Reduction in Na concentration, using choline as substitute cation, caused an increase in Kt for alanine but had no effect on maximal alanine influx. The reciprocal of Kt was a linear function of Na concentration. Similar results were obtained for valine and leucine and these amino acids competitively inhibited alanine influx both in the presence and in the absence of Na. These results lead to a model for the transport system which involves combination of Na and amino acid with a single carrier or site leading to penetration of both solutes. The model predicts that alanine should cause an increase in Na influx and the ratio of this extra Na flux to alanine flux should vary with Na concentration. The observed relation agreed closely with predicted values for Na concentrations from 5 to 140 mM. These results support the hypothesis that interactions between Na and amino acid transport depend in part on a common entry mechanism at the mucosal border of the intestine.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britton H. G. Fluxes in passive, monovalent and polyvalent carrier systems. J Theor Biol. 1966 Jan;10(1):28–52. doi: 10.1016/0022-5193(66)90177-9. [DOI] [PubMed] [Google Scholar]
  2. CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
  3. Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
  4. Csáky T. Z., Hara Y. Inhibition of active intestinal sugar transport by digitalis. Am J Physiol. 1965 Sep;209(3):467–472. doi: 10.1152/ajplegacy.1965.209.3.467. [DOI] [PubMed] [Google Scholar]
  5. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  6. Esposito G., Faelli A., Capraro V. Influence of the transport of amino acids on glucose and sodium transport across the small intestine of the albino rat incubated in vitro. Experientia. 1964 Mar 15;20(3):122–124. doi: 10.1007/BF02150687. [DOI] [PubMed] [Google Scholar]
  7. FINCH L. R., HIRD F. J. The uptake of amino acids by isolated segments of rat intestine. II. A survey of affinity for uptake from rates of uptake and competition for uptake. Biochim Biophys Acta. 1960 Sep 23;43:278–287. doi: 10.1016/0006-3002(60)90438-8. [DOI] [PubMed] [Google Scholar]
  8. FRIDHANDLER L., QUASTEL J. H. Absorption of amino acids from isolated surviving intestine. Arch Biochem Biophys. 1955 Jun;56(2):424–440. doi: 10.1016/0003-9861(55)90263-0. [DOI] [PubMed] [Google Scholar]
  9. HEARON J. Z. Rate behavior of metabolic systems. Physiol Rev. 1952 Oct;32(4):499–523. doi: 10.1152/physrev.1952.32.4.499. [DOI] [PubMed] [Google Scholar]
  10. HEINZ E., DURBIN R. P. Studies of the chloride transport in the gastric mucosa of the frog. J Gen Physiol. 1957 Sep 20;41(1):101–117. doi: 10.1085/jgp.41.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacquez J. A., Sherman J. H. The effect of metabolic inhibitors on transport and exchange of amino acids in Ehrlich ascites cells. Biochim Biophys Acta. 1965 Sep 27;109(1):128–141. doi: 10.1016/0926-6585(65)90097-x. [DOI] [PubMed] [Google Scholar]
  12. KROMPHARDT H., GROBECKER H., RING K., HEINZ E. UBER DEN EINFLUSS VON ALKALI-IONEN AUF DEN GLYCINTRANSPORT IN EHRLICH-ASCITES-TUMORZELLEN. Biochim Biophys Acta. 1963 Aug 13;74:549–551. doi: 10.1016/0006-3002(63)91400-8. [DOI] [PubMed] [Google Scholar]
  13. Kinter W. B., Wilson T. H. AUTORADIOGRAPHIC STUDY OF SUGAR AND AMINO ACID ABSORPTION BY EVERTED SACS OF HAMSTER INTESTINE. J Cell Biol. 1965 May 1;25(2):19–39. doi: 10.1083/jcb.25.2.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kipnis D. M., Parrish J. E. Role of Na+ and K+ on sugar (2-deoxyglucose) and amino acid (alpha-aminoisobutyric acid) transport in striated muscle. Fed Proc. 1965 Sep-Oct;24(5):1051–1059. [PubMed] [Google Scholar]
  15. LIN E. C., HAGIHIRA H., WILSON T. H. Specificity of the transport system for neutral amino acids in the hamster intestine. Am J Physiol. 1962 May;202:919–925. doi: 10.1152/ajplegacy.1962.202.5.919. [DOI] [PubMed] [Google Scholar]
  16. MATTHEWS D. M., LASTER L. KINETICS OF INTESTINAL ACTIVE TRANSPORT OF FIVE NEUTRAL AMINO ACIDS. Am J Physiol. 1965 Apr;208:593–600. doi: 10.1152/ajplegacy.1965.208.4.593. [DOI] [PubMed] [Google Scholar]
  17. RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Potassium migration and amino acid transport. J Biol Chem. 1958 Dec;233(6):1479–1484. [PubMed] [Google Scholar]
  18. Rosenberg I. H., Coleman A. L., Rosenberg L. E. The role of sodium ion in the transport of amino acids by the intestine. Biochim Biophys Acta. 1965 May 25;102(1):161–171. doi: 10.1016/0926-6585(65)90210-4. [DOI] [PubMed] [Google Scholar]
  19. SCHULTZ S. G., ZALUSKY R. INTERACTIONS BETWEEN ACTIVE SODIUM TRANSPORT AND ACTIVE AMINO-ACID TRANSPORT IN ISOLATED RABBIT ILEUM. Nature. 1965 Jan 16;205:292–294. doi: 10.1038/205292a0. [DOI] [PubMed] [Google Scholar]
  20. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schultz S. G., Curran P. F., Chez R. A., Fuisz R. E. Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol. 1967 May;50(5):1241–1260. doi: 10.1085/jgp.50.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wheeler K. P., Inui Y., Hollenberg P. F., Eavenson E., Christensen H. N. Relation of amino acid transport to sodium-ion concentration. Biochim Biophys Acta. 1965 Nov 29;109(2):620–622. doi: 10.1016/0926-6585(65)90191-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES