Abstract
Unidirectional influxes of L-alanine and Na from the mucosal solution into the epithelium of in vitro rabbit ileum have been determined. In the presence of 140 mM Na, alanine influx is approximately 2.2 µmoles/hr cm2, but is inhibited if the NaCl in the mucosal solution is replaced by choline Cl, Tris-Cl, mannitol, LiCl, or KCl. Although alanine influx is strongly dependent upon Na in the mucosal solution, it is uninfluenced by marked reduction of intracellular Na pools. In addition, alanine influx is unaffected by intracellular alanine concentration. Na influx is markedly inhibited by the presence of Li. Evidence is presented that Na transport across the mucosal border cannot be attributed to simple diffusion even though the net flux across this surface is in the direction of the electrochemical potential difference.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLFREY V. G., MEUDT R., HOPKINS J. W., MIRSKY A. E. Sodium-dependent "transport" reactions in the cell nucleus and their role in protein and nucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Jul 15;47:907–932. doi: 10.1073/pnas.47.7.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BITTNER J., HEINZ E. DIE WIRKUNG VON G-STROPHANTIN AUF DEN GLYZINTRANSPORT IN EHRLICH-ASCITES-TUMORZELLEN. Biochim Biophys Acta. 1963 Aug 13;74:392–400. doi: 10.1016/0006-3002(63)91383-0. [DOI] [PubMed] [Google Scholar]
- Bosacková J., Crane R. K. Studies on the mechanism of intestinal absorption of sugars. 8. Cation inhibition of active sugar transport and 22Na influx into hamster small intestine, in vitro. Biochim Biophys Acta. 1965 Jul 22;102(2):423–435. doi: 10.1016/0926-6585(65)90132-9. [DOI] [PubMed] [Google Scholar]
- Bosacková J., Crane R. K. Studies on the mechanism of intestinal absorption of sugars. IX. Intracellular sodium concentrations and active sugar transport by hamster small intestine in vitro. Biochim Biophys Acta. 1965 Jul 22;102(2):436–441. doi: 10.1016/0926-6585(65)90133-0. [DOI] [PubMed] [Google Scholar]
- CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
- CSAKY T. Z. Effect of cardioactive steroids on the active transport of non-electrolytes. Biochim Biophys Acta. 1963 Jul 2;74:160–162. doi: 10.1016/0006-3002(63)91350-7. [DOI] [PubMed] [Google Scholar]
- CSAKY T. Z., HARTZOG H. G., 3rd, FERNALD G. W. Effect of digitalis on active intestinal sugar transport. Am J Physiol. 1961 Mar;200:459–460. doi: 10.1152/ajplegacy.1961.200.3.459. [DOI] [PubMed] [Google Scholar]
- Clarkson T. W. The transport of salt and water across isolated rat ileum. Evidence for at least two distinct pathways. J Gen Physiol. 1967 Jan;50(3):695–727. doi: 10.1085/jgp.50.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
- Csáky T. Z., Hara Y. Inhibition of active intestinal sugar transport by digitalis. Am J Physiol. 1965 Sep;209(3):467–472. doi: 10.1152/ajplegacy.1965.209.3.467. [DOI] [PubMed] [Google Scholar]
- Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOX M., THIER S., ROSENBERG L., SEGAL S. IONIC REQUIREMENTS FOR AMINO ACID TRANSPORT IN THE RAT KIDNEY CORTEX SLICE. I. INFLUENCE OF EXTRACELLULAR IONS. Biochim Biophys Acta. 1964 Jan 27;79:167–176. doi: 10.1016/0926-6577(64)90049-x. [DOI] [PubMed] [Google Scholar]
- HEINZ E., WALSH P. M. Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells. J Biol Chem. 1958 Dec;233(6):1488–1493. [PubMed] [Google Scholar]
- KLEINZELLER A., KOTYK A. Cations and transport of galactose in kidney-cortex slices. Biochim Biophys Acta. 1961 Dec 9;54:367–369. doi: 10.1016/0006-3002(61)90383-3. [DOI] [PubMed] [Google Scholar]
- KROMPHARDT H., GROBECKER H., RING K., HEINZ E. UBER DEN EINFLUSS VON ALKALI-IONEN AUF DEN GLYCINTRANSPORT IN EHRLICH-ASCITES-TUMORZELLEN. Biochim Biophys Acta. 1963 Aug 13;74:549–551. doi: 10.1016/0006-3002(63)91400-8. [DOI] [PubMed] [Google Scholar]
- Kinter W. B., Wilson T. H. AUTORADIOGRAPHIC STUDY OF SUGAR AND AMINO ACID ABSORPTION BY EVERTED SACS OF HAMSTER INTESTINE. J Cell Biol. 1965 May 1;25(2):19–39. doi: 10.1083/jcb.25.2.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kipnis D. M., Parrish J. E. Role of Na+ and K+ on sugar (2-deoxyglucose) and amino acid (alpha-aminoisobutyric acid) transport in striated muscle. Fed Proc. 1965 Sep-Oct;24(5):1051–1059. [PubMed] [Google Scholar]
- Mawe R. C., Hempling H. G. The exchange of C14 glucose across the membrane of the human erythrocyte. J Cell Physiol. 1965 Aug;66(1):95–103. doi: 10.1002/jcp.1030660110. [DOI] [PubMed] [Google Scholar]
- NATHANS D., TAPLEY D. F., ROSS J. E. Intestinal transport of amino acids studies in vitro with L-[1311] monoiodotyrosine. Biochim Biophys Acta. 1960 Jul 1;41:271–282. doi: 10.1016/0006-3002(60)90010-x. [DOI] [PubMed] [Google Scholar]
- RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Potassium migration and amino acid transport. J Biol Chem. 1958 Dec;233(6):1479–1484. [PubMed] [Google Scholar]
- RIKLIS E., QUASTEL J. H. Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol. 1958 Mar;36(3):347–362. [PubMed] [Google Scholar]
- Rosenberg I. H., Coleman A. L., Rosenberg L. E. The role of sodium ion in the transport of amino acids by the intestine. Biochim Biophys Acta. 1965 May 25;102(1):161–171. doi: 10.1016/0926-6585(65)90210-4. [DOI] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAYLOR C. B. Cation-stimulation of an ATPase system from the intestinal mucosa of the guinea-pig. Biochim Biophys Acta. 1962 Jul 2;60:437–440. doi: 10.1016/0006-3002(62)90429-8. [DOI] [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
- VIDAVER G. A. GLYCINE TRANSPORT BY HEMOLYZED AND RESTORED PIGEON RED CELLS. Biochemistry. 1964 Jun;3:795–799. doi: 10.1021/bi00894a011. [DOI] [PubMed] [Google Scholar]
- Wheeler K. P., Inui Y., Hollenberg P. F., Eavenson E., Christensen H. N. Relation of amino acid transport to sodium-ion concentration. Biochim Biophys Acta. 1965 Nov 29;109(2):620–622. doi: 10.1016/0926-6585(65)90191-3. [DOI] [PubMed] [Google Scholar]
- YUNIS A. A., ARIMURA G. K., KIPNIS D. M. AMINO ACID TRANSPORT IN BLOOD CELLS. I. EFFECT OF CATIONS ON AMINO ACID TRANSPORT IN HUMAN LEUKOCYTES. J Lab Clin Med. 1963 Sep;62:465–476. [PubMed] [Google Scholar]