Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Jul 1;50(6):1765–1784. doi: 10.1085/jgp.50.6.1765

Water Permeability of Thin Lipid Membranes

Albert Cass 1, Alan Finkelstein 1
PMCID: PMC2225726  PMID: 6034767

Abstract

The osmotic permeability coefficient, Pf, and the tagged water permeability coefficient, Pd, were determined for thin (<100 A) lipid membranes formed from ox brain lipids plus DL-α-tocopherol; their value of approximately 1 x 10-3 cm/sec is within the range reported for plasma membranes. It was established that Pf = Pd. Other reports that Pf > Pd can be attributed to the presence of unstirred layers in the experimental determination of Pd. Thus, there is no evidence for the existence of aqueous pores in these thin phospholipid membranes. The adsorption onto the membrane of a protein that lowers its electrical resistance by a factor of 103 was found not to affect its water permeability; however, glucose and sucrose were found to interact with the membrane to modify Pf. Possible mechanisms of water transport across these films are discussed, together with the implications of data obtained on these structures for plasma membranes.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAINTY J., GINZBURG B. Z. THE PERMEABILITY OF THE CELL MEMBRANES OF NITELLA TRANSLUCENS TO UREA, AND THE EFFECT OF HIGH CONCENTRATIONS OF SUCROSE ON THIS PERMEABILITY. Biochim Biophys Acta. 1964 Jan 27;79:112–121. doi: 10.1016/0926-6577(64)90044-0. [DOI] [PubMed] [Google Scholar]
  2. Hanai T., Haydon D. A., Redwood W. R. The water permeability of artificial bimolecular leaflets: a comparison of radio-tracer and osmotic methods. Ann N Y Acad Sci. 1966 Jul 14;137(2):731–739. doi: 10.1111/j.1749-6632.1966.tb50194.x. [DOI] [PubMed] [Google Scholar]
  3. Hanai T., Haydon D. A. The permeability to water of bimolecular lipid membranes. J Theor Biol. 1966 Aug;11(3):370–382. doi: 10.1016/0022-5193(66)90099-3. [DOI] [PubMed] [Google Scholar]
  4. Huang C., Thompson T. E. Properties of lipid bilayer membranes separating two aqueous phases: water permeability. J Mol Biol. 1966 Feb;15(2):539–554. doi: 10.1016/s0022-2836(66)80126-2. [DOI] [PubMed] [Google Scholar]
  5. LEFEVRE P. G., HABICH K. I., HESS H. S., HUDSON M. R. PHOSPHOLIPID-SUGAR COMPLEXES IN RELATION TO CELL MEMBRANE MONOSACCHARIDE TRANSPORT. Science. 1964 Feb 28;143(3609):955–957. doi: 10.1126/science.143.3609.955. [DOI] [PubMed] [Google Scholar]
  6. LUCY J. A. GLOBULAR LIPID MICELLES AND CELL MEMBRANES. J Theor Biol. 1964 Sep;7:360–373. doi: 10.1016/0022-5193(64)90080-3. [DOI] [PubMed] [Google Scholar]
  7. Longsworth L. G. THE THEORY OF DIFFUSION IN CELL MODELS. J Gen Physiol. 1933 Nov 20;17(2):211–235. doi: 10.1085/jgp.17.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. NEVIS A. H. Water transport in invertebrate peripheral nerve fibers. J Gen Physiol. 1958 May 20;41(5):927–958. doi: 10.1085/jgp.41.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PAGANELLI C. V., SOLOMON A. K. The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol. 1957 Nov 20;41(2):259–277. doi: 10.1085/jgp.41.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ROBBINS E., MAURO A. Experimental study of the independence of diffusion and hydrodynamic permeability coefficients in collodion membranes. J Gen Physiol. 1960 Jan;43:523–532. doi: 10.1085/jgp.43.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES