Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Jul 1;50(6):1627–1640. doi: 10.1085/jgp.50.6.1627

Light Stimulation of Active Transport in Hydrodictyon africanum

J A Raven 1
PMCID: PMC2225729  PMID: 6034761

Abstract

The mechanism of light stimulation of active K and Cl influx and active Na efflux, in Hydrodictyon africanum has been investigated using different wavelengths of red light and different gas mixtures, and the inhibitors DCMU and CCCP. The active Cl influx requires photosystem 2, since its relative quantal efficiency falls with increasing wavelength of red light, and it is as sensitive to the inhibitor DCMU as is photosynthesis; it is relatively insensitive to the uncoupler CCCP. The active K influx and active Na efflux are inhibited by CCCP, but the relative quantal efficiency of these processes increases with increasing wavelength of red light, and they are relatively insensitive to DCMU. These cation fluxes can be supported by cyclic photophosphorylation, whereas Cl influx needs photosystem 2 but probably not ATP.

Full Text

The Full Text of this article is available as a PDF (847.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BISHOP N. I., GAFFRON H. Photoreduction at lambda 705 millimicrons in adapted algae. Biochem Biophys Res Commun. 1962 Aug 31;8:471–476. doi: 10.1016/0006-291x(62)90299-1. [DOI] [PubMed] [Google Scholar]
  2. BISHOP N. I. The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim Biophys Acta. 1958 Jan;27(1):205–206. doi: 10.1016/0006-3002(58)90313-5. [DOI] [PubMed] [Google Scholar]
  3. Brown A. H., Weis D. Relation Between Respiration and Photosynthesis in the Green Alga, Ankistrodesmus braunii. Plant Physiol. 1959 May;34(3):224–234. doi: 10.1104/pp.34.3.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown J. S., French C. S. Absorption Spectra and Relative Photostability of the Different Forms of Chlorophyll in Chlorella. Plant Physiol. 1959 May;34(3):305–309. doi: 10.1104/pp.34.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GINGRAS G., LEMASSON C., FORK D. C. A study of the mode of action of 3-(4-chlcrophenyl)-1,1-dimethylurea on photosynthesis. Biochim Biophys Acta. 1963 Feb 5;69:438–440. doi: 10.1016/0006-3002(63)91289-7. [DOI] [PubMed] [Google Scholar]
  6. GOVINDJEE, OWENS O. V., HOCH G. A MASS-SPECTROSCOPIC STUDY OF THE EMERSON ENHANCEMENT EFFECT. Biochim Biophys Acta. 1963 Sep 24;75:281–284. doi: 10.1016/0006-3002(63)90611-5. [DOI] [PubMed] [Google Scholar]
  7. Gingras G., Lemasson C. A study of the mode of action of 3-(4-chlorophenyl)-1,1-dimethylurea on photosynthesis. Biochim Biophys Acta. 1965 Sep 27;109(1):67–78. doi: 10.1016/0926-6585(65)90091-9. [DOI] [PubMed] [Google Scholar]
  8. Gould E. S., Bassham J. A. Inhibitor studies on the photosynthetic carbon reduction cycle in Chlorella pyrenoidosa. Biochim Biophys Acta. 1965 May 25;102(1):9–19. doi: 10.1016/0926-6585(65)90199-8. [DOI] [PubMed] [Google Scholar]
  9. HEYTLER P. G., PRICHARD W. W. A new class of uncoupling agents--carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun. 1962 May 4;7:272–275. doi: 10.1016/0006-291x(62)90189-4. [DOI] [PubMed] [Google Scholar]
  10. HOCH G., MARTIN I. TWO LIGHT REACTIONS IN TPN REDUCTION BY SPINACH CHLOROPLASTS. Arch Biochem Biophys. 1963 Sep;102:430–438. doi: 10.1016/0003-9861(63)90251-0. [DOI] [PubMed] [Google Scholar]
  11. HOCH G., OWENS O. V., KOK B. Photosynthesis and respiration. Arch Biochem Biophys. 1963 Apr;101:171–180. doi: 10.1016/0003-9861(63)90547-2. [DOI] [PubMed] [Google Scholar]
  12. Izawa S., Good N. E. The number of sites sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea,3-(4-chlorophenyl)-1,1-dimethylurea and 2-chloro-4-(2-propylamino)-6-ethylamino-s-triazine in isolated chloroplasts. Biochim Biophys Acta. 1965 May 25;102(1):20–38. doi: 10.1016/0926-6585(65)90200-1. [DOI] [PubMed] [Google Scholar]
  13. MACROBBIE E. A. THE NATURE OF THE COUPLING BETWEEN LIGHT ENERGY AND ACTIVE ION TRANSPORT IN NITELLA TRANSLUCENS. Biochim Biophys Acta. 1965 Jan 25;94:64–73. doi: 10.1016/0926-6585(65)90008-7. [DOI] [PubMed] [Google Scholar]
  14. Sauer K., Biggins J. Action spectra and quantum yields for nicotinamide--adenine dinucleotide phosphate reduction by chloroplasts. Biochim Biophys Acta. 1965 May 25;102(1):55–72. doi: 10.1016/0926-6585(65)90202-5. [DOI] [PubMed] [Google Scholar]
  15. Sauer K., Park R. B. The Hill reaction of chloroplasts. Action spectra and quantum requirements. Biochemistry. 1965 Dec;4(12):2791–2798. doi: 10.1021/bi00888a032. [DOI] [PubMed] [Google Scholar]
  16. Smith F. A. Active phosphate uptake by Nitella translucens. Biochim Biophys Acta. 1966 Sep 5;126(1):94–99. doi: 10.1016/0926-6585(66)90040-9. [DOI] [PubMed] [Google Scholar]
  17. WIESSNER W. QUANTUM REQUIREMENT FOR ACETATE ASSIMILATION AND ITS SIGNIFICANCE FOR QUANTUM MEASUREMENTS IN PHOTOPHOSPHORYLATION. Nature. 1965 Jan 2;205:56–57. doi: 10.1038/205056a0. [DOI] [PubMed] [Google Scholar]
  18. Zweig G., Avron M. Dependence of photophosphorylation by isolated chloroplasts on the oxidation-reduction state of N-methylphenazinium methyl sulphate (phenazine methosulphate). Nature. 1965 Oct 9;208(5006):190–191. doi: 10.1038/208190b0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES