Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Jul 1;50(6):1499–1515. doi: 10.1085/jgp.50.6.1499

Removal of Potassium Negative Resistance in Perfused Squid Giant Axons

Harold Lecar 1, Gerald Ehrenstein 1, Leonard Binstock 1, Robert E Taylor 1
PMCID: PMC2225733  PMID: 6034755

Abstract

Squid giant axons, internally and externally perfused with solutions having potassium as the only cation, exhibit an approximately linear steady-state current-voltage relation. When small amounts of calcium and magnesium are present in the external potassium solution, the current-voltage curve is markedly nonlinear, exhibiting the rectification and negative resistance which have been observed for intact axons in isosmotic potassium solutions. The effects of perfusion and removal of external divalent cations are interpreted in terms of two components of current, a linear component and a nonlinear time-varying component. The former is increased and the latter diminished by the removal of the external divalent cations.

Full Text

The Full Text of this article is available as a PDF (912.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELMAN W. J., TAYLOR R. E. Leakage current rectification in the squid giant axon. Nature. 1961 Jun 3;190:883–885. doi: 10.1038/190883a0. [DOI] [PubMed] [Google Scholar]
  2. ARMSTRONG C. M., BINSTOCK L. THE EFFECTS OF SEVERAL ALCOHOLS ON THE PROPERTIES OF THE SQUID GIANT AXON. J Gen Physiol. 1964 Nov;48:265–277. doi: 10.1085/jgp.48.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. MOORE J. W. Excitation of the squid axon membrane in isosmotic potassium chloride. Nature. 1959 Jan 24;183(4656):265–266. doi: 10.1038/183265b0. [DOI] [PubMed] [Google Scholar]
  6. Mueller P., Rudin D. O. Induced excitability in reconstituted cell membrane structure. J Theor Biol. 1963 May;4(3):268–280. doi: 10.1016/0022-5193(63)90006-7. [DOI] [PubMed] [Google Scholar]
  7. OIKAWA T., SPYROPOULOS C. S., TASAKI I., TEORELL T. Methods for perfusing the giant axon of Loligo pealii. Acta Physiol Scand. 1961 Jun;52:195–196. doi: 10.1111/j.1748-1716.1961.tb02218.x. [DOI] [PubMed] [Google Scholar]
  8. SEGAL J. R. An anodal threshold phenomenon in the squid giant axon. Nature. 1958 Nov 15;182(4646):1370–1370. doi: 10.1038/1821370a0. [DOI] [PubMed] [Google Scholar]
  9. TASAKI I. Permeability of squid axon membrane to various ions. J Gen Physiol. 1963 Mar;46:755–772. doi: 10.1085/jgp.46.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. TASAKI I., TAKENAKA T. RESTING AND ACTION POTENTIAL OF SQUID GIANT AXONS INTRACELLULARLY PERFUSED WITH SODIUM-RICH SOLUTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:619–626. doi: 10.1073/pnas.50.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES