Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Jul 1;50(6):1709–1728. doi: 10.1085/jgp.50.6.1709

Nickel Substitution for Calcium in Excitation-Contraction Coupling of Skeletal Muscle

Donald A Fischman 1, Roy C Swan 1
PMCID: PMC2225734  PMID: 4227212

Abstract

In 1962 Frank (22) reported that the addition of any one of a number of divalent cations, including Ni, to a Ca-free Ringer solution prevented the rapid loss of contractility seen in the absence of external Ca. To investigate further the Ni-Ca substitution, studies were made of 45Ca and 63Ni exchange during contraction and at rest using frog striated muscle. In contrast to 45Ca, it was found that there is no increase of 63Ni uptake associated with a K contracture of the sartorius muscle. The rates of loss of 63Ni and 45Ca from resting toe muscles previously bathed in the respective radioisotopes are not significantly different. Resting and action potentials, after 1 hr in a Ringer solution with Ni replacing Ca, closely resemble these potentials in normal Ca-Ringer's solution. Studies on the syneresis of isolated myofibrils indicate that Ni cannot replace Ca in activating this reaction. It is suggested that Ca is required for at least two steps in E-C coupling: one is the spread of excitation at the sarcolemma and transverse tubular system; the second is the activation of actomyosin ATPase. Conceivably Ni can substitute for Ca in the former but not in the latter.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CALDWELL P. C., WALSTER G. STUDIES ON THE MICRO-INJECTION OF VARIOUS SUBSTANCES INTO CRAB MUSCLE FIBRES. J Physiol. 1963 Nov;169:353–372. doi: 10.1113/jphysiol.1963.sp007261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COSTANTIN L. L., FRANZINI-ARMSTRONG C., PODOLSKY R. J. LOCALIZATION OF CALCIUM-ACCUMULATING STRUCTURES IN STRIATED MUSCLE FIBERS. Science. 1965 Jan 8;147(3654):158–160. doi: 10.1126/science.147.3654.158. [DOI] [PubMed] [Google Scholar]
  4. CURTIS B. A. THE RECOVERY OF CONTRACTILE ABILITY FOLLOWING A CONTRACTURE IN SKELETAL MUSCLE. J Gen Physiol. 1964 May;47:953–964. doi: 10.1085/jgp.47.5.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EDMAN K. A., GRIEVE D. W. The role of calcium and zinc in the electrical and mechanical responses of frog sartorius muscle. Experientia. 1961 Dec 15;17:557–558. doi: 10.1007/BF02156422. [DOI] [PubMed] [Google Scholar]
  6. ENDO M. ENTRY OF A DYE INTO THE SARCOTUBULAR SYSTEM OF MUSCLE. Nature. 1964 Jun 13;202:1115–1116. doi: 10.1038/2021115b0. [DOI] [PubMed] [Google Scholar]
  7. FAHRENBACH W. H. SARCOPLASMIC RETICULUM: ULTRASTRUCTURE OF THE TRIADIC JUNCTION. Science. 1965 Mar 12;147(3663):1308–1309. doi: 10.1126/science.147.3663.1308. [DOI] [PubMed] [Google Scholar]
  8. FENN W. O., GILBERT D. L. Calcium equilibrium in muscle. J Gen Physiol. 1957 Jan 20;40(3):393–408. doi: 10.1085/jgp.40.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRANK G. B. Effects of changes in extracellular calcium concentration on the potassium-induced contracture of frog's skeletal muscle. J Physiol. 1960 Jun;151:518–538. doi: 10.1113/jphysiol.1960.sp006457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FRANZINI-ARMSTRONG C., PORTER K. R. SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS. J Cell Biol. 1964 Sep;22:675–696. doi: 10.1083/jcb.22.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HASSELBACH W. RELAXATION AND THE SARCOTUBULAR CALCIUM PUMP. Fed Proc. 1964 Sep-Oct;23:909–912. [PubMed] [Google Scholar]
  13. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  15. Hendrickson H. S., Fullington J. G. Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide. Biochemistry. 1965 Aug;4(8):1599–1605. doi: 10.1021/bi00884a021. [DOI] [PubMed] [Google Scholar]
  16. LORKOVIC H. Potassium contracture and calcium influx in frog's skeletal muscle. Am J Physiol. 1962 Mar;202:440–444. doi: 10.1152/ajplegacy.1962.202.3.440. [DOI] [PubMed] [Google Scholar]
  17. MILLIGAN J. V. THE TIME COURSE OF THE LOSS AND RECOVERY OF CONTRACTURE ABILITY IN FROG STRIATED MUSCLE FOLLOWING EXPOSURE TO CA-FREE SOLUTIONS. J Gen Physiol. 1965 May;48:841–858. doi: 10.1085/jgp.48.5.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pease D. C., Jenden D. J., Howell J. N. Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. II. Electron microscopic localization of uptake sites. J Cell Physiol. 1965 Apr;65(2):141–153. doi: 10.1002/jcp.1030650203. [DOI] [PubMed] [Google Scholar]
  19. SANDOW A., BIEN S. M. Blockade of neuromuscular transmission by zinc. Nature. 1962 Feb 17;193:689–690. doi: 10.1038/193689a0. [DOI] [PubMed] [Google Scholar]
  20. SEIDEL J. C., GERGELY J. STUDIES ON MYOFIBRILLAR ADENOSINE TRIPHOSPHATASE WITH CALCIUM-FREE ADENOSINE TRIPHOSPHATE. I. THE EFFECT OF ETHYLENEDIAMINETETRAACETATE, CALCIUM, MAGNESIUM, AND ADENOSINE TRIPHOSPHATE. J Biol Chem. 1963 Nov;238:3648–3653. [PubMed] [Google Scholar]
  21. SPYROPOULOS C. S., BRADY R. O. Prolongation of response of node of Ranvier by metal ions. Science. 1959 May 15;129(3359):1366–1367. doi: 10.1126/science.129.3359.1366. [DOI] [PubMed] [Google Scholar]
  22. Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
  23. TAKAHASHI H., USUDA S., EHARA S. Some factors influencing the plateau-formation in Co-treated or Nitreated single myelinated nerve fibres. Jpn J Physiol. 1962 Oct 15;12:545–559. doi: 10.2170/jjphysiol.12.545. [DOI] [PubMed] [Google Scholar]
  24. WEBER A., HERZ R. Requirement for calcium in the synaeresis of myofibrils. Biochem Biophys Res Commun. 1961 Dec 20;6:364–368. doi: 10.1016/0006-291x(61)90146-2. [DOI] [PubMed] [Google Scholar]
  25. WEBER A., WINICUR S. The role of calcium in the superprecipitation of actomyosin. J Biol Chem. 1961 Dec;236:3198–3202. [PubMed] [Google Scholar]
  26. WINEGRAD S. AUTORADIOGRAPHIC STUDIES OF INTRACELLULAR CALCIUM IN FROG SKELETAL MUSCLE. J Gen Physiol. 1965 Jan;48:455–479. doi: 10.1085/jgp.48.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss G. B., Bianchi C. P. The effect of potassium concentration on Ca45 uptake in frog sartorius muscle. J Cell Physiol. 1965 Jun;65(3):385–392. doi: 10.1002/jcp.1030650312. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES