Abstract
Ouabain added to physiological salt solutions bathing the isolated frog retina irreversibly abolishes the electrical response to light (the electroretinogram or ERG). The time course of abolition depends on the concentration of ouabain in the medium and the surface of the retina to which it is applied. When the glycoside is placed on the receptor surface, in 7 min the ERG is completely eliminated by 10-4 M ouabain and more than 90% inhibited by 3 x 10-5 M ouabain. The effect is slower at lower concentrations and when the solution is applied to the vitreous surface of the retina. The evidence suggests that abolition of the ERG by ouabain is due principally to inhibition of the active transport of sodium: (a) Structurally modified glycosides which are considerably less potent inhibitors of alkali cation-activated ATPase activity in preparations of frog retinal outer segments are also poorer inhibitors of electrical activity in isolated retinas. (b) Replacing much of the sodium in the medium bathing the retina by choline, Tris, or sucrose significantly protects the retina from ouabain. It is suggested that in a standard sodium environment essentially constant activity of the sodium pump is required to prevent rapid and irreversible change. The cellular sites most critically dependent on the sodium pump have not been identified.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIRKS R. I. THE ROLE OF SODIUM IONS IN THE METABOLISM OF ACETYLCHOLINE. Can J Biochem Physiol. 1963 Dec;41:2573–2597. [PubMed] [Google Scholar]
- BONTING S. L., CARAVAGGIO L. L., CANADY M. R. STUDIES ON SODIUM-POTASSIUM-ACTIVATED ADENOSINE TRIPHOSPHATASE. X. OCCURRENCE IN RETINAL RODS AND RELATION TO RHODOPSIN. Exp Eye Res. 1964 Mar;3:47–56. doi: 10.1016/s0014-4835(64)80007-5. [DOI] [PubMed] [Google Scholar]
- BROWN K. T., WATANABE K. Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina. Nature. 1962 Mar 10;193:958–passim. doi: 10.1038/193958a0. [DOI] [PubMed] [Google Scholar]
- BROWN K. T., WIESEL T. N. Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye. J Physiol. 1961 Sep;158:257–280. doi: 10.1113/jphysiol.1961.sp006768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONE R. A. QUANTUM RELATIONS OF THE RAT ELECTRORETINOGRAM. J Gen Physiol. 1963 Jul;46:1267–1286. doi: 10.1085/jgp.46.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FURUKAWA T., HANAWA I. Effects of some common cations on electroretinogram of the toad. Jpn J Physiol. 1955 Dec 15;5(4):289–300. doi: 10.2170/jjphysiol.5.289. [DOI] [PubMed] [Google Scholar]
- Frank R. N., Goldsmith T. H. Adenosine triphosphatase activity in the rod outer segments of the pig retina. Arch Biochem Biophys. 1965 Jun;110(3):517–525. doi: 10.1016/0003-9861(65)90445-5. [DOI] [PubMed] [Google Scholar]
- GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Granit R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol. 1933 Feb 8;77(3):207–239. doi: 10.1113/jphysiol.1933.sp002964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAMASAKI D. I. THE ELECTRORETINOGRAM AFTER APPLICATION OF VARIOUS SUBSTANCES TO THE ISOLATED RETINA. J Physiol. 1964 Oct;173:449–458. doi: 10.1113/jphysiol.1964.sp007467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lasansky A. Functional implications of structural findings in retinal glial cells. Prog Brain Res. 1965;15:48–72. doi: 10.1016/s0079-6123(08)60939-5. [DOI] [PubMed] [Google Scholar]
- SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]