Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Jul 1;50(6):197–218. doi: 10.1085/jgp.50.6.197

ATPase Activity of Myosin Correlated with Speed of Muscle Shortening

Michael Bárány 1
PMCID: PMC2225740  PMID: 4227924

Abstract

Myosin was isolated from 14 different muscles (mammals, lower vertebrates, and invertebrates) of known maximal speed of shortening. These myosin preparations were homogeneous in the analytical ultracentrifuge or, in a few cases, showed, in addition to the main myosin peak, part of the myosin in aggregated form. Actin- and Ca++-activated ATPase activities of the myosins were generally proportional to the speed of shortening of their respective muscles; i.e. the greater the intrinsic speed, the higher the ATPase activity. This relation was found when the speed of shortening ranged from 0.1 to 24 muscle lengths/sec. The temperature coefficient of the Ca++-activated myosin ATPase was the same as that of the speed of shortening, Q10 about 2. Higher Q10 values were found for the actin-activated myosin ATPase, especially below 10°C. By using myofibrils instead of reconstituted actomyosin, Q10 values close to 2 could be obtained for the Mg++-activated myofibrillar ATPase at ionic strength of 0.014. In another series of experiments, myosin was isolated from 11 different muscles of known isometric twitch contraction time. The ATPase activity of these myosins was inversely proportional to the contraction time of the muscles. These results suggest a role for the ATPase activity of myosin in determining the speed of muscle contraction. In contrast to the ATPase activity of myosin, which varied according to the speed of contraction, the F-actin-binding ability of myosin from various muscles was rather constant.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARANY M., BARANY K., RECKARD T., VOLPE A. MYOSIN OF FAST AND SLOW MUSCLES OF THE RABBIT. Arch Biochem Biophys. 1965 Jan;109:185–191. doi: 10.1016/0003-9861(65)90304-8. [DOI] [PubMed] [Google Scholar]
  2. BARANY M., BARANY K. Studies on "active centers" of L-myosin. Biochim Biophys Acta. 1959 Oct;35:293–309. doi: 10.1016/0006-3002(59)90378-6. [DOI] [PubMed] [Google Scholar]
  3. BARANY M., NAGY B., FINKELMAN F., CHRAMBACH A. Studies on the removal of the bound nucleotide of actin. J Biol Chem. 1961 Nov;236:2917–2925. [PubMed] [Google Scholar]
  4. BENDALL J. R. A study of the kinetics of the fibrillar adenosine triphosphatase of rabbit skeletal muscle. Biochem J. 1961 Dec;81:520–535. doi: 10.1042/bj0810520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BULLER A. J., ECCLES J. C., ECCLES R. M. Differentiation of fast and slow muscles in the cat hind limb. J Physiol. 1960 Feb;150:399–416. doi: 10.1113/jphysiol.1960.sp006394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CAIN D. F., DAVIES R. E. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun. 1962 Aug 7;8:361–366. doi: 10.1016/0006-291x(62)90008-6. [DOI] [PubMed] [Google Scholar]
  7. CAIN D. F., INFANTE A. A., DAVIES R. E. Chemistry of muscle contraction. Adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature. 1962 Oct 20;196:214–217. doi: 10.1038/196214a0. [DOI] [PubMed] [Google Scholar]
  8. Close R. The relation between intrinsic speed of shortening and duration of the active state of muscle. J Physiol. 1965 Oct;180(3):542–559. doi: 10.1113/jphysiol.1965.sp007716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Costantin L. L., Podolsky R. J., Tice L. W. Calcium activation of frog slow muscle fibres. J Physiol. 1967 Jan;188(2):261–271. doi: 10.1113/jphysiol.1967.sp008137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GOFFART M., HOLMES O., BACQ Z. M. Some mechanical properties of skeletal muscle in the sloth. Arch Int Physiol Biochim. 1962 Feb;70:103–106. doi: 10.3109/13813456209092846. [DOI] [PubMed] [Google Scholar]
  11. GORDON G., PHILLIPS C. G. Slow and rapid components in a flexor muscle. Q J Exp Physiol Cogn Med Sci. 1953;38(1):35–45. doi: 10.1113/expphysiol.1953.sp001005. [DOI] [PubMed] [Google Scholar]
  12. GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
  13. HILL A. V. THE EFFECT OF LOAD ON THE HEAT OF SHORTENING OF MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:297–318. doi: 10.1098/rspb.1964.0004. [DOI] [PubMed] [Google Scholar]
  14. INFANTE A. A., DAVIES R. E. Adenosine triphosphate breakdown during a single isotonic twitch of frog sartorius muscle. Biochem Biophys Res Commun. 1962 Nov 27;9:410–415. doi: 10.1016/0006-291x(62)90025-6. [DOI] [PubMed] [Google Scholar]
  15. INFANTE A. A., KLAUPIKS D., DAVIES R. E. LENGTH, TENSION AND METABOLISM DURING SHORT ISOMETRIC CONTRACTIONS OF FROG SARTORIUS MUSCLES. Biochim Biophys Acta. 1964 Jul 29;88:215–217. doi: 10.1016/0926-6577(64)90171-8. [DOI] [PubMed] [Google Scholar]
  16. Infante A. A., Davies R. E. The effect of 2,4-dinitrofluorobenzene on the activity of striated muscle. J Biol Chem. 1965 Oct;240(10):3996–4001. [PubMed] [Google Scholar]
  17. MOMMAERTS W. F. H. M. Reversible polymerization and ultracentrifugal purification of actin. J Biol Chem. 1951 Feb;188(2):559–565. [PubMed] [Google Scholar]
  18. SAMAHA F. J., GERGELY J. CA++ UPTAKE AND ATPASE OF HUMAN SARCOPLASMIC RETICULUM. J Clin Invest. 1965 Aug;44:1425–1431. doi: 10.1172/JCI105248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SANDOW A., SEAMAN T. MUSCLE SHORTENING VELOCITY IN NORMAL AND POTENTIATED CONTRACTIONS. Life Sci. 1964 Feb;3:91–96. doi: 10.1016/0024-3205(64)90185-7. [DOI] [PubMed] [Google Scholar]
  20. Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
  21. Smith D. S., Gupta B. L., Smith U. The organization and myofilament array of insect visceral muscles. J Cell Sci. 1966 Mar;1(1):49–57. doi: 10.1242/jcs.1.1.49. [DOI] [PubMed] [Google Scholar]
  22. Smith D. S. The organization and function of the sarcoplasmic reticulum and T-system of muscle cells. Prog Biophys Mol Biol. 1966;16:107–142. doi: 10.1016/0079-6107(66)90004-6. [DOI] [PubMed] [Google Scholar]
  23. Sréter F. A., Gergely J. Comparative studies of the MG activated ATPase activity and Ca uptake of fractions of white and red muscle homogenates. Biochem Biophys Res Commun. 1964 Jul 27;16(5):438–443. doi: 10.1016/0006-291x(64)90372-9. [DOI] [PubMed] [Google Scholar]
  24. WEBER A., HERZ R. Requirement for calcium in the synaeresis of myofibrils. Biochem Biophys Res Commun. 1961 Dec 20;6:364–368. doi: 10.1016/0006-291x(61)90146-2. [DOI] [PubMed] [Google Scholar]
  25. WEBER A., HERZ R. The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem. 1963 Feb;238:599–605. [PubMed] [Google Scholar]
  26. WEBER A. The ultracentrifugal separation of L-myosin and actin in an actomyosin sol under the influence of ATP. Biochim Biophys Acta. 1956 Feb;19(2):345–351. doi: 10.1016/0006-3002(56)90439-5. [DOI] [PubMed] [Google Scholar]
  27. WEBER A., WINICUR S. The role of calcium in the superprecipitation of actomyosin. J Biol Chem. 1961 Dec;236:3198–3202. [PubMed] [Google Scholar]
  28. WEBER H. H., PORTZEHL H. Muscle contraction and fibrous muscle proteins. Adv Protein Chem. 1952;7:161–252. doi: 10.1016/s0065-3233(08)60019-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES